Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Classification of Diseased and Healthy Apple Leaves through Extreme Learning Machines
Indexado
Scopus SCOPUS_ID:85147093193
DOI 10.1109/ICA-ACCA56767.2022.10006199
Año 2022
Tipo

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Diseases in agricultural crops are a risk for fruit productivity and quality. Chile is a fruit exporting country; that needs the development of technologies for diseases prevention and treatment. Farmers have been exploring how to use Artificial Intelligence to solve problems. Nowadays, deep artificial intelligence models have a great performance. However, farmers need to reduce economic costs, thus, it is important to explore artificial intelligence models. These models should be easy to implement on low-cost electronic devices. Extreme Learning Machines (ELM) stand out for their fast and stable training, and the models' implementation is accessible to all public. This work presents the first approach to the binary classification of diseased and healthy apple leaves through ELM. In this research, it was used: 1) standard ELM; 2) regularized ELM; 3) weighted ELM. The weighted ELM performance reaches an accuracy = 0.66 and geometric mean = 0.6. The ELM models results show that are potential and feasible to classify complex images of diseased and healthy leaves. However, ELMs do not perform as well with this data compared to CNN.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Sin Disciplinas
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Ahumada-Garcia, Roberto Hombre Universidad Católica del Maule - Chile
2 Zabala-Blanco, David Hombre Universidad Católica del Maule - Chile
3 Soto, Ismael Hombre Universidad de Santiago de Chile - Chile
4 Lopez-Cortes, Xaviera A. Mujer Universidad Católica del Maule - Chile
5 Barrientos, Ricardo J. Hombre Universidad Católica del Maule - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.