Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Water flow in graphene nanochannels driven by imposed thermal gradients: the role of flexural phonons
Indexado
WoS WOS:000923645500001
Scopus SCOPUS_ID:85147274228
DOI 10.1039/D2CP04093J
Año 2023
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Accurate control of fluid transport in nanoscale structures is key to enable the design of foreseeable nanofluidic devices with applications in many fields such as chip cooling, energy conversion, drug delivery and medical diagnosis. Here, inspired by the experimental observation of intrinsic thermal ripples in graphene and by recent advances in the manipulation of 2D nanomaterials, we introduce a graphene-based thermal nanopump which produces controlled and continuous liquid flow in nanoslit channels. We investigate the performance of this thermal nanopump employing large scale molecular dynamics simulations. Upon systematically imposing thermal gradients, a net water flow towards the low-temperature zone is observed, achieving flow velocities up to 4 m s−1. We observe that water flow rates increase monotonically due to larger ripple fluctuations on the graphene layers as higher thermal gradients are applied. Moreover, we find that the out-of-plane flexural phonons in graphene are responsible for flow generation wherein lower frequency phonon branches are activated with higher imposed thermal gradients. Furthermore, by modifying the wettability of the channel walls, an increase of 50% in the water flow rates is observed, showing that the efficiency of the proposed thermal pump can be enhanced by tuning the channel wall hydrophobicity. Our results indicate that thermal gradients can be employed to drive continuous water flow in graphene nanoslit channels with potential applications in nanofluidic devices.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Chemistry, Physical
Physics, Atomic, Molecular & Chemical
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Oyarzua, Elton Hombre Swinburne University of Technology - Australia
Swinburne Univ Technol - Australia
2 Walther, Jens Honore Hombre Technical University of Denmark - Dinamarca
Tech Univ Denmark - Dinamarca
3 ZAMBRANO-RODRIGUEZ, HARVEY ALEXANDER Hombre Universidad Técnica Federico Santa María - Chile
Univ Tecn Feder St Maria - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Fondo Nacional de Desarrollo Científico y Tecnológico
Agencia Nacional de Investigación y Desarrollo
Department of Physics at the Technical University of Denmark
ANID through FONDECYT
Department of Physics, Harvard University

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
The authors thank the Department of Physics at the Technical University of Denmark for computational support. Partial funding from ANID through FONDECYT project No. 1212053 is acknowledged.
The authors thank the Department of Physics at the Technical University of Denmark for computational support. Partial funding from ANID through FONDECYT project No. 1212053 is acknowledged.

Muestra la fuente de financiamiento declarada en la publicación.