Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1088/1361-6544/ACB399 | ||||
| Año | 2023 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We study existence, nonexistence, and uniqueness of positive radial solutions for a class of nonlinear systems driven by Pucci extremal operators under a Lane-Emden coupling configuration. Our results are based on the analysis of the associated quadratic dynamical system and energy methods. For both regular and exterior domain radial solutions we obtain new regions of existence and nonexistence. Besides, we show an exclusion principle for regular solutions, either in R N or in a ball, by exploiting the uniqueness of trajectories produced by the flow. In particular, for the standard Lane-Emden system involving the Laplacian operator, we prove that the critical hyperbola of regular radial positive solutions is also the threshold for existence and nonexistence of radial exterior domain solutions with Neumann boundary condition. As a byproduct, singular solutions with fast decay at infinity are also found.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Maia, Liliane | Mujer |
Universidade de Brasília - Brasil
Univ Brasilia - Brasil |
| 2 | Nornberg, Gabrielle | Mujer |
Universidad de Chile - Chile
|
| 3 | Pacella, Filomena | Mujer |
Sapienza Università di Roma - Italia
Sapienza Univ Roma - Italia |
| Fuente |
|---|
| CAPES |
| CNPq |
| Conselho Nacional de Desenvolvimento Científico e Tecnológico |
| Fundação de Amparo à Pesquisa do Estado de São Paulo |
| Coordenação de Aperfeiçoamento de Pessoal de Nível Superior |
| Centre National de la Recherche Scientifique |
| FAPDF |
| Fundacao de Apoio a Pesquisa do Distrito Federal |
| Centro de Modelamiento Matematico |
| Vicerrectoria de Investigacion y Desarrollo |
| ANID Fondecyt |
| CMM-DIM |
| INDAM-GNAMPA |
| Vicerrectoria de Investigacion y Desarrollo, U de Chile |
| Centro de Modelamiento Matematico, BASAL funds for centersof excellence from ANID-Chile, CMM-DIM |
| FAPESP, Sao Paulo Research Foundation |
| ANID Fondecyt Regular 2022 Grant |
| Agradecimiento |
|---|
| L Maia was supported by FAPDF, CAPES, and CNPq grant 309 866/2020-0. G Nornberg was supported by FAPESP grants 2018/04 000-9 and 2019/031 019-9, São Paulo Research Foundation; by Centro de Modelamiento Matemático ACE210010 and FB210005, BASAL funds for centersof excellence from ANID-Chile, CMM-DIM, CNRS IRL 2807; by ANID Fondecyt Regular 2022 Grant 1220 776, and by Vicerrectoría de Investigación y Desarrollo, Project UI-001/21, U de Chile. F Pacella was supported by INDAM-GNAMPA. |
| L Maia was supported by FAPDF, CAPES, and CNPq grant 309 866/2020-0. G Nornberg was supported by FAPESP grants 2018/04 000-9 and 2019/031 019-9, Sao Paulo Research Foundation; by Centro de Modelamiento Matematico ACE210010 and FB210005, BASAL funds for centersof excellence from ANID-Chile, CMM-DIM, CNRS IRL 2807; by ANID Fondecyt Regular 2022 Grant 1220 776, and by Vicerrectoria de Investigacion y Desarrollo, Project UI-001/21, U de Chile. F Pacella was supported by INDAM-GNAMPA. |