Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1109/TCSII.2023.3241163 | ||||
| Año | 2023 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
This brief presents an energy-efficient and high-performance XNOR-bitcount architecture exploiting the benefits of computing-in-memory (CiM) and unique properties of spin-transfer torque magnetic RAM (STT-MRAM) based on double-barrier magnetic tunnel junctions (DMTJs). Our work proposes hardware and algorithmic optimizations, benchmarked against a state-of-the-art CiM-based XNOR-bitcount design. Simulation results show that our hardware optimization reduces the storage requirement (-50%) for each XNOR-bitcount operation. The proposed algorithmic optimization improves execution time and energy consumption by about 30% (78%) and 26% (85%), respectively, for single (5 sequential) 9-bit XNOR-bitcount operations. As a case study, our solution is demonstrated for shape analysis using bit-quads.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Musello, Ariana | Mujer |
Synopsys Chile Limitada - Chile
Synopsys Chile Ltda - Chile |
| 2 | Garzon, Esteban | Hombre |
Synopsys Chile Limitada - Chile
Univ Calabria - Italia Synopsys Chile Ltda - Chile |
| 3 | Lanuzza, Marco | Hombre |
Synopsys Chile Limitada - Chile
Univ Calabria - Italia Synopsys Chile Ltda - Chile |
| 4 | Procel, Luis Miguel | Hombre |
Universidad San Francisco de Quito - Ecuador
Univ San Francisco Quito - Ecuador |
| 5 | Taco, Ramiro | Hombre |
Universidad San Francisco de Quito - Ecuador
Univ San Francisco Quito - Ecuador |