Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1007/S10092-022-00488-Z | ||||
| Año | 2022 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
In this paper we complement the study of a new mixed finite element scheme, allowing conservation of momentum and thermal energy, for the Boussinesq model describing natural convection and derive a reliable and efficient residual-based a posteriori error estimator for the corresponding Galerkin scheme in two and three dimensions. More precisely, by extending standard techniques commonly used on Hilbert spaces to the case of Banach spaces, such as local estimates, suitable Helmholtz decompositions and the local approximation properties of the Clément and Raviart–Thomas operators, we derive the aforementioned a posteriori error estimator on arbitrary (convex or non-convex) polygonal and polyhedral regions. In turn, inverse inequalities, the localization technique based on bubble functions, and known results from previous works, are employed to prove the local efficiency of the proposed a posteriori error estimator. Finally, to illustrate the performance of the adaptive algorithm based on the proposed a posteriori error indicator and to corroborate the theoretical results, we provide some numerical examples.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Caucao, Sergio | Hombre |
Universidad Católica de la Santísima Concepción - Chile
|
| 2 | OYARZUA-VARGAS, RICARDO | Hombre |
Universidad del Bío Bío - Chile
Universidad de Concepción - Chile |
| 3 | Villa-Fuentes, Segundo | Hombre |
Universidad del Bío Bío - Chile
|
| Fuente |
|---|
| FONDECYT |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Universidad del Bío-Bío |
| Convocatoria nacional subvencion a la instalacion en la academia |
| Centro de Modelamiento Matematico |
| ANID-Chile |
| Universidad del Bio-Bio through VRIP-UBB project |
| Anillo of Computational Mathematics for Desalination Processes |
| PAI Program: Convocatoria Nacional Subvencion a la Instalacion en la Academia, ANID BECAS/DOCTORADO NACIONAL |
| ANID-Chile through projects Centro de Modelamiento Matematico |
| Agradecimiento |
|---|
| This work was partially supported by ANID-Chile through projects Centro de Modelamiento Matemático (FB210005), Anillo of Computational Mathematics for Desalination Processes (ACT210087), project Fondecyt 1161325, project PAI77190084 of the PAI Program: Convocatoria Nacional Subvención a la Instalación en la Academia, ANID BECAS/DOCTORADO NACIONAL 21180900; and by Universidad del Bío-Bío through VRIP-UBB project 2120173 GI/C. |
| This work was partially supported by ANID-Chile through projects Centro de Modelamiento Matematico (FB210005), Anillo of Computational Mathematics for Desalination Processes (ACT210087), project Fondecyt 1161325, project PAI77190084 of the PAI Program: Convocatoria Nacional Subvencion a la Instalacion en la Academia, ANID BECAS/DOCTORADO NACIONAL 21180900; and by Universidad del Bio-Bio through VRIP-UBB project 2120173 GI/C. |