Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1007/978-3-319-59153-7_52 | ||||
| Año | 2017 | ||||
| Tipo | proceedings paper |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
In this paper, randomized single-hidden layer feedforward networks (SLFNs) are extended to handle outliers sequentially in online system identification tasks involving large-scale datasets. Starting from the description of the original batch learning algorithms of the evaluated randomized SLFNs, we discuss how these neural architectures can be easily adapted to cope with sequential data by means of the famed least mean squares (LMS). In addition, a robust variant of this rule, known as the least mean M-estimate (LMM) rule, is used to cope with outliers. Comprehensive performance comparison on benchmarking datasets are carried out in order to assess the validity of the proposed methodology.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Mattos, Cesar Lincoln C. | Hombre |
Univ Fed Ceara - Brasil
Universidade Federal do Ceará - Brasil |
| 2 | Barreto, Guilherme A. | Hombre |
Univ Fed Ceara - Brasil
Universidade Federal do Ceará - Brasil |
| 3 | ACUÑA-LEIVA, GONZALO PEDRO | Hombre |
Universidad de Santiago de Chile - Chile
|
| 4 | Rojas, I | - | |
| 5 | Joya, G | - | |
| 6 | Catala, A | - |
| Fuente |
|---|
| CNPq |
| Conselho Nacional de Desenvolvimento Científico e Tecnológico |
| FUNCAP |
| Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico |
| Conselho Nacional de Desenvolvimento CientÃfico e Tecnológico |
| Fundação Cearense de Apoio ao Desenvolvimento CientÃfico e Tecnológico |
| NUTEC |
| Conicyt via Fondef Mineria Grant |
| Conicyt via Fondef Mineria |
| Agradecimiento |
|---|
| The first two authors thank the financial support of FUNCAP, CNPq (grant no. 309451/2015-9) and NUTEC. The third author acknowledges partial financial support of Conicyt via Fondef Mineria Grant IT16M100008. |
| The first two authors thank the financial support of FUNCAP, CNPq (grant no. 309451/2015-9) and NUTEC. The third author acknowledges partial financial support of Conicyt via Fondef Mineria Grant IT16M100008. |