Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1117/12.2628826 | ||||
| Año | 2022 | ||||
| Tipo | proceedings paper |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
This paper presents SAFE, a prototype system for supporting the fish landings control of small-scale fishing boats in Chile. SAFE is a modern solution for fishery inspection that automatically discriminates fish species using machine learning. Here, we present a version of SAFE that classifies five target pelagic fish species in Chile: anchovy, Chilean jack mackerel, hake, mote sculpin, and sardine. The system has two stages; the first detects and segments all fish appearing in an image. These segmented images then feed the second stage, which perform species classification. A database of approximately 266 images from these five fish species was constructed for training, validation, and testing purposes. For the fish detection stage, we exploited transfer learning to train Mask R-CNN architectures, an instance segmentation model. As for the fish species classification stage, we exploited transfer learning to train ResNet50 and VGG16 deep learning architectures. Results show that SAFE achieves between 90% and 96.3% macro-average precision (MP) when classifying the five fish species mentioned above. The best architecture, composed of a Mask R-CNN-based detector and a VGG16-based classifier, achieves an MP of 96.3%, which could process a single fish as quick as 16.67 FPS, and one whole 1920x1080-pixel image as quick as 2 FPS.
| Revista | ISSN |
|---|---|
| Proceedings Of Spie The International Society For Optical Engineering | 0277-786X |
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Fuentes, Vincenzo Caro | - |
Universidad de Concepción - Chile
|
| 1 | Caro Fuentes, Vincenzo | - |
Universidad de Concepción - Chile
|
| 2 | Sánchez, Ariel Torres | - |
Universidad de Concepción - Chile
|
| 2 | Torres Sanchez, Ariel | - |
Universidad de Concepción - Chile
|
| 3 | PEZOA-NUNEZ, JORGE EDGARDO | Hombre |
Universidad de Concepción - Chile
|
| 4 | TORRES-INOSTROZA, SERGIO NEFTALI | Hombre |
Universidad de Concepción - Chile
|
| 5 | CASTILLO-FELICES, ROSARIO DEL PILAR | Hombre |
Universidad de Concepción - Chile
|
| 6 | Escribano, Rubén | - |
Universidad de Concepción - Chile
|
| 7 | URBINA-FONERON, MAURICIO ANDRONICO | Hombre |
Universidad de Concepción - Chile
|
| 8 | Zelinski, ME | - | |
| 9 | Taha, TM | - | |
| 10 | Howe, J | - |
| Fuente |
|---|
| Comisión Nacional de Investigación Científica y Tecnológica |
| Fondo de Fomento al Desarrollo Científico y Tecnológico |
| Servicio Nacional de Pesca y Acuicultura |
| ANILLO CyT |
| CONICYT: FONDEF IDeA |
| Agradecimiento |
|---|
| This paper is dedicated to the memory of Dr. Jorge E. Pezoa, an outstanding colleague, and a friend above all. This work was funded by CONICYT: FONDEF IDeA IT20I0032, 2021-Present; and by ANILLO CyT ACT210073. The authors also thank Servicio Nacional de Pesca y Acuicultura (SERNAPESCA) for providing fish samples. |
| This paper is dedicated to the memory of Dr. Jorge E. Pezoa, an outstanding colleague, and a friend above all. This work was funded by CONICYT: FONDEF IDeA IT20I0032, 2021-Present; and by ANILLO CyT ACT210073. The authors also thank Servicio Nacional de Pesca y Acuicultura (SERNAPESCA) for providing fish samples. |