Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Method for passive acoustic monitoring of bird communities using UMAP and a deep neural network
Indexado
WoS WOS:000895775200005
Scopus SCOPUS_ID:85142344519
DOI 10.1016/J.ECOINF.2022.101909
Año 2022
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



An effective practice for monitoring bird communities is the recognition and identification of their acoustic signals, whether simple, complex, fixed or variable. A method for the passive monitoring of diversity, activity and acoustic phenology of structural species of a bird community in an annual cycle is presented. The method includes the semi-automatic elaboration of a dataset of 22 vocal and instrumental forms of 16 species. To analyze bioacoustic richness, the UMAP algorithm was run on two parallel feature extraction channels. A convolutional neural network was trained using STFT-Mel spectrograms to perform the task of automatic identification of bird species. The predictive performance was evaluated by obtaining a minimum average precision of 0.79, a maximum equal to 1.0 and a mAP equal to 0.97. The model was applied to a huge set of passive recordings made in a network of urban wetlands for one year. The acoustic activity results were synchronized with climatological temperature data and sunlight hours. The results confirm that the proposed method allows for monitoring a taxonomically diverse group of birds that nourish the annual soundscape of an ecosystem, as well as detecting the presence of cryptic species that often go unnoticed.

Revista



Revista ISSN
Ecological Informatics 1574-9541

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Ecology
Scopus
Computer Science Applications
Ecology
Ecology, Evolution, Behavior And Systematics
Modeling And Simulation
Applied Mathematics
Ecological Modeling
Computational Theory And Mathematics
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Morales, G. A. Hombre Universidad Austral de Chile - Chile
2 VARGAS-CORTES, VICTOR ALBERTO Hombre Universidad Austral de Chile - Chile
3 Espejo, Diego Hombre Universidad Austral de Chile - Chile
4 POBLETE-RAMIREZ, VICTOR HERNAN Hombre Universidad Austral de Chile - Chile
5 TOMASEVIC-VUKASOVIC, JORGE ANDRES Hombre Universidad Austral de Chile - Chile
6 Otondo, Felipe Hombre Universidad Austral de Chile - Chile
7 Navedo, Juan G. Hombre Universidad Austral de Chile - Chile
Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE) - Chile
Millennium Inst Biodivers Antarctic & Subantarct E - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Fondo Nacional de Desarrollo Científico y Tecnológico
Chilean National Fund for Scientific and Technological Development (FONDECYT)
Chilean National Fund for Scientific and Technological Development
National Agency for Research and Development of Chile ANID
Audio Mining Laboratory

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
The research that led to this article was funded by the Chilean National Fund for Scientific and Technological Development (FONDECYT) under grants 1190722 and 1220320 .
The research that led to this article was funded by the Chilean National Fund for Scientific and Technological Development (FONDECYT) under grants 1190722 and 1220320 .
The authors would like to thank Sebastian Arriagada for the diagramming of the map of the monitoring areas (Fig. 1), to Jorge Ruiz for his contributions in the auditory identification of the analyzed species, the students of the Audio Mining Laboratory (AuMiLab) for the valuable discussions around deep learning tools and the scholarship from the National Agency for Research and Development of Chile ANID awarded to Gabriel Morales to complete his postgraduate program.The research that led to this article was funded by the Chilean National Fund for Scientific and Technological Development (FONDECYT) under grants 1190722 and 1220320.

Muestra la fuente de financiamiento declarada en la publicación.