Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1214/22-EJP874 | ||||
| Año | 2022 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We establish an explicit rate of convergence for some systems of mean-field interacting diffusions with logistic binary branching, towards solutions of nonlinear evolution equations with non-local self-diffusion and logistic mass growth, which were shown to describe their large population limits in [12]. The proof relies on a novel coupling argument for binary branching diffusions based on optimal transport, allowing us to sharply mimic the trajectory of the interacting binary branching population by means of a system of independent particles with suitably distributed random space-time births. We are thus able to derive an optimal convergence rate, in the dual bounded-Lipschitz distance on finite measures, for the empirical measure of the population, from the convergence rate in 2-Wasserstein distance of empirical distributions of i.i.d. samples. Our approach and results extend propagation of chaos techniques and ideas, from kinetic models to stochastic systems of interacting branching populations, and appear to be new in this setting, even in the simple case of pure binary branching diffusions.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | FONTBONA-TORRES, JOAQUIN | - |
Universidad de Chile - Chile
|
| 2 | Muñoz-Hernández, Felipe | - |
Universidad de Chile - Chile
Institut Polytechnique de Paris - Francia Inst Polytech Paris - Francia |
| Fuente |
|---|
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| FONDECYT grant |
| ANID-Chile |
| FB21000 Center for Mathematical Modeling |
| ANID-Chile BASAL Funds |
| Agradecimiento |
|---|
| *J.F. acknowledges partial support from Fondecyt Grant 1201948 and from ANID-Chile BASAL Funds ACE210010 and FB21000 Center for Mathematical Modeling. F. M.-H. acknowledges financial support from Doctoral Fellowship ANID-PFCHA/Doctorado Nacional/2017-21171912. †Universidad de Chile, Chile. E-mail: fontbona@dim.uchile.cl,fmunozh@dim.uchile.cl ‡Institut Polytechnique de Paris, France. |
| J.F. acknowledges partial support from Fondecyt Grant 1201948 and from ANID-Chile BASAL Funds ACE210010 and FB21000 Center for Mathematical Modeling. F. M.-H. acknowledges financial support from Doctoral Fellowship ANID-PFCHA/Doctorado Nacional/2017-21171912. |