Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Supervised Learning Algorithm for Predicting Mortality Risk in Older Adults Using Cardiovascular Health Study Dataset
Indexado
WoS WOS:000887066100001
Scopus SCOPUS_ID:85142831103
DOI 10.3390/APP122211536
Año 2022
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Featured Application: In this project, we designed an algorithm to predict mortality from multiple chronic conditions and cardiovascular diseases. We designed this algorithm to function as a decision aid for healthcare professionals. Multiple chronic conditions are an important factor influencing mortality in older adults. At the same time, cardiovascular events in older adult patients are one of the leading causes of mortality worldwide. This study aimed to design a machine learning model capable of predicting mortality risk in older adult patients with cardiovascular pathologies and multiple chronic diseases using the Cardiovascular Health Study database. The methodology for algorithm design included (i) database analysis, (ii) variable selection, (iii) feature matrix creation and data preprocessing, (iv) model training, and (v) performance analysis. The analysis and variable selection were performed through previous knowledge, correlation, and histograms to visualize the data distribution. The machine learning models selected were random forest, support vector machine, and logistic regression. The models were trained using two sets of variables. First, eight years of the data were summarized as the mode of all years per patient for each variable (123 variables). The second set of variables was obtained from the mode every three years (369 variables). The results show that the random forest trained with the second set of variables has the best performance (89% accuracy), which is better than other reported results in the literature.

Revista



Revista ISSN
Applied Sciences Basel 2076-3417

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Chemistry, Multidisciplinary
Engineering, Multidisciplinary
Physics, Applied
Materials Science, Multidisciplinary
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Navarrete, Jean Hombre Universidad del Bío Bío - Chile
Universidad de Concepción - Chile
2 Pinto, Jose - Universidad de Concepción - Chile
3 FIGUEROA-ITURRIETA, ROSA LILIANA Mujer Universidad de Concepción - Chile
Núcleo Milenio de Sociomedicina - Chile
3 Liliana Figueroa, Rosa Mujer Universidad de Concepción - Chile
Núcleo Milenio de Sociomedicina - Chile
4 Lagos, Maria Elena Mujer Núcleo Milenio de Sociomedicina - Chile
Universidad de Concepción - Chile
4 Elena Lagos, Maria Mujer Núcleo Milenio de Sociomedicina - Chile
Universidad de Concepción - Chile
5 Zeng-Treitler, Qing - The George Washington University - Estados Unidos
GEORGE WASHINGTON UNIV - Estados Unidos
The George Washington University School of Medicine and Health Sciences - Estados Unidos
6 TARAMASCO-TORO, CARLA Mujer Núcleo Milenio de Sociomedicina - Chile
Universidad Nacional Andrés Bello - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Universidad de Concepción
FONDECYT
ANID Millennium Science Initiative Program (Millennium Nucleus on Sociomedicine)
National Center on Health Information Systems (CENS)

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
The authors would like to thank the National Center on Health Information Systems (CTI220001 CENS), Universidad de Concepcion, FONDECYT Regular 1201787: Multimodal Machine Learning approach for detecting pathological activity patterns in elderlies, and ANID Millennium Science Initiative Program (Millennium Nucleus on Sociomedicine NCS2021_013) for supporting the authors of this work. We also would like to give special thanks to Stuart J. Nelson for his critical review. This manuscript was prepared using CHS data obtained from the NHLBI Biologic Specimen and Data Repository Information Coordinating Center (BioLINCC) and does not necessarily reflect the opinions or views of the CHS or NHLBI.

Muestra la fuente de financiamiento declarada en la publicación.