Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Embedded Learning Approaches in the Whale Optimizer to Solve Coverage Combinatorial Problems
Indexado
WoS WOS:000897549200001
Scopus SCOPUS_ID:85143599612
DOI 10.3390/MATH10234529
Año 2022
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



When we face real problems using computational resources, we understand that it is common to find combinatorial problems in binary domains. Moreover, we have to take into account a large number of possible candidate solutions, since these can be numerous and make it complicated for classical algorithmic techniques to address them. When this happens, in most cases, it becomes a problem due to the high resource cost they generate, so it is of utmost importance to solve these problems efficiently. To cope with this problem, we can apply other methods, such as metaheuristics. There are some metaheuristics that allow operation in discrete search spaces; however, in the case of continuous swarm intelligence metaheuristics, it is necessary to adapt them to operate in discrete domains. To perform this adaptation, it is necessary to use a binary scheme to take advantage of the original moves of the metaheuristics designed for continuous problems. In this work, we propose to hybridize the whale optimization algorithm metaheuristic with the Q-learning reinforcement learning technique, which we call (the QBWOA). By using this technique, we are able to realize an smart and fully online binarization scheme selector, the results have been statistically promising thanks to the respective tables and graphs.

Revista



Revista ISSN
Mathematics 2227-7390

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Mathematics
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Becerra-Rozas, Marcelo Hombre Pontificia Universidad Católica de Valparaíso - Chile
2 Cisternas-Caneo, Felipe Hombre Pontificia Universidad Católica de Valparaíso - Chile
3 CRAWFORD-LABRIN, BRODERICK Hombre Pontificia Universidad Católica de Valparaíso - Chile
4 SOTO-DE GIORGIS, RICARDO JAVIER Hombre Pontificia Universidad Católica de Valparaíso - Chile
5 GARCIA-CONEJEROS, JOSE ANTONIO Hombre Pontificia Universidad Católica de Valparaíso - Chile
6 ASTORGA-SOLARI, GINO NICOLAS Hombre Universidad de Valparaíso - Chile
7 PALMA-MUNOZ, WENCESLAO ENRIQUE - Pontificia Universidad Católica de Valparaíso - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
National Agency for Research and Development (ANID)/Scholarship Program/DOCTORADO NACIONAL
ANID/FONDECYT/REGULAR
Agenția Națională pentru Cercetare și Dezvoltare
Beca INF-PUCV

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
Crawford, Ricardo Soto, Gino Astorga and Wenceslao Palma are supported by Grant ANID/FONDECYT/REGULAR/1210810. Marcelo Becerra-Rozas is supported by National Agency for Research and Development (ANID)/Scholarship Program/DOCTORADO NACIONAL/2021-21210740. Felipe Cisternas-Caneo is supported by Beca INF-PUCV.
Crawford, Ricardo Soto, Gino Astorga and Wenceslao Palma are supported by Grant ANID/FONDECYT/REGULAR/1210810. Marcelo Becerra-Rozas is supported by National Agency for Research and Development (ANID)/Scholarship Program/DOCTORADO NACIONAL/2021-21210740. Felipe Cisternas-Caneo is supported by Beca INF-PUCV.

Muestra la fuente de financiamiento declarada en la publicación.