Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Data Type and Data Sources for Agricultural Big Data and Machine Learning
Indexado
WoS WOS:000896365000001
Scopus SCOPUS_ID:85143623891
DOI 10.3390/SU142316131
Año 2022
Tipo revisión

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Sustainable agriculture is currently being challenged under climate change scenarios since extreme environmental processes disrupt and diminish global food production. For example, drought-induced increases in plant diseases and rainfall caused a decrease in food production. Machine Learning and Agricultural Big Data are high-performance computing technologies that allow analyzing a large amount of data to understand agricultural production. Machine Learning and Agricultural Big Data are high-performance computing technologies that allow the processing and analysis of large amounts of heterogeneous data for which intelligent IT and high-resolution remote sensing techniques are required. However, the selection of ML algorithms depends on the types of data to be used. Therefore, agricultural scientists need to understand the data and the sources from which they are derived. These data can be structured, such as temperature and humidity data, which are usually numerical (e.g., float); semi-structured, such as those from spreadsheets and information repositories, since these data types are not previously defined and are stored in No-SQL databases; and unstructured, such as those from files such as PDF, TIFF, and satellite images, since they have not been processed and therefore are not stored in any database but in repositories (e.g., Hadoop). This study provides insight into the data types used in Agricultural Big Data along with their main challenges and trends. It analyzes 43 papers selected through the protocol proposed by Kitchenham and Charters and validated with the PRISMA criteria. It was found that the primary data sources are Databases, Sensors, Cameras, GPS, and Remote Sensing, which capture data stored in Platforms such as Hadoop, Cloud Computing, and Google Earth Engine. In the future, Data Lakes will allow for data integration across different platforms, as they provide representation models of other data types and the relationships between them, improving the quality of the data to be integrated.

Revista



Revista ISSN
Sustainability 2071-1050

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Environmental Sciences
Environmental Studies
Green & Sustainable Science & Technology
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 CRAVERO-LEAL, ANIA LORENA Mujer Universidad de La Frontera - Chile
2 Pardo, Sebastián Hombre Universidad de La Frontera - Chile
3 Galeas, Patricio Hombre Universidad de La Frontera - Chile
4 Lopez Fenner, Julio Hombre Universidad de La Frontera - Chile
4 Fenner, Julio Hombre Universidad de La Frontera - Chile
5 CANIUPAN-MARILEO, MONICA ALEJANDRA Mujer Universidad del Bío Bío - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Universidad de La Frontera

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
Universidad de La Frontera, Project PAT22-0005(2023).
Universidad de La Frontera, Project PAT22-0005(2023).

Muestra la fuente de financiamiento declarada en la publicación.