Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.PHYSLETA.2022.128336 | ||||
| Año | 2022 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We examine the stability domains of a 1D discrete Schrödinger equation in the simultaneous presence of parity-time (PT) symmetry and fractionality. Direct numerical examination of the eigenvalues of the system reveals that, as the fractional exponent is decreased away from unity (the standard case), the instability gain increases abruptly past a critical value. Also, as the length of the system increases, the stable fraction decreases as well. Also, for a fixed fractional exponent and lattice size, an increase in gain/loss also brings about an abrupt increase in the instability gain. Finally, the participation ratio of the modes is seen to decrease with an increase of the gain/loss parameter and with a decrease of the fractional exponent, evidencing a tendency towards localization.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | MOLINA-GALVEZ, MARIO IGNACIO | Hombre |
Universidad de Chile - Chile
|