Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.3390/MATH10152647 | ||||
| Año | 2022 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Nonlinearities, exponential trends, and Euler equations are three key features of standard dynamic volatility models of speculation, economic growth, or macroeconomic fluctuations with occasionally binding constraints and endogenous state-dependent volatility. A natural way to estimate a model with all such three features could be to use the observed nonstationary data in a single step without preliminary linearization, log-linearization, or preliminary detrending. Adoption of this natural strategy confronts a serious challenge that has been neither articulated nor solved: a dichotomy in the empirical model implied by the Euler equation. This leads to a discontinuity in the regression in the limit, rendering the approaches employed in available proofs of consistency inapplicable. We characterize the problem and develop a novel method of proof of consistency and asymptotic normality. Our methodological contribution establishes a foundation for consistent estimation and hypothesis testing of nonstationary models without resorting to preliminary detrending, an a priori assumption that any trend is exactly zero, linearization, or other restrictions on the model.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | BOBENRIETH-HOCHFARBER, JUAN RODRIGO ANDRES | Hombre |
Universidad del Bío Bío - Chile
|
| 2 | BOBENRIETH-HOCHFARBER, EUGENIO SEBASTIAN ANTONIO | Hombre |
Pontificia Universidad Católica de Chile - Chile
|
| 3 | Villegas, Andrés | Hombre |
Universidad Santo Tomás - Chile
|
| 4 | Wright, Brian | Hombre |
University of California, Berkeley - Estados Unidos
UNIV CALIF BERKELEY - Estados Unidos |