Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Identification and Forecast of Potential Fishing Grounds for Anchovy (<i>Engraulis ringens</i>) in Northern Chile Using Neural Networks Modeling
Indexado
WoS WOS:000847015500001
Scopus SCOPUS_ID:85137367202
DOI 10.3390/FISHES7040204
Año 2022
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Engraulis ringens (E. ringens) is a small pelagic fish of which the geographic and bathymetric distribution is conditioned by fluctuations in oceanographic conditions at different time scales (daily, weekly, monthly, annually, supra-annually, and longer) and by fishing. Understanding the organism−environment interactions and predicting the spatial distribution of its schools can improve conservation actions and fishery management, along with the operation of the fleets targeting E. ringens. There is an important fishery of E. ringens in Northern Chile (18°21′ S–26°00′ S), which provides about 80% of the purse seine catch. To identify and predict potential fishing grounds for E. ringens in this system, we implemented a predictive model of fishing grounds based on neural networks, which was trained with the georeferenced data of daily catches by industrial purse sein ships from 2003 to 2020 and information on oceanographic variables (sea surface temperature, salinity, depth of the mixed layer, sea height, and currents) obtained from the Copernicus Marine Enviroment Monitoring Service (CMEMS program). The neural network model had a very good performance (86%). Longitude (23%) was the most relevant variable for identifying potential fishing grounds, followed by the mixed layer depth (18%), latitude (15%), sea surface temperature (12%), month (12%), sea height (9%), salinity (9%), and the zonal and meridional components of the current velocity (2%). The neural network model classified correctly the majority of the areas with and without fishing potential; thus, its use is recommended to predict fishing grounds for E. ringens in the study area. Its application could increase by 88% of the probability of capture anchovy by the purse seine fleet of Northern Chile.

Revista



Revista ISSN
Fishes 2410-3888

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Fisheries
Marine & Freshwater Biology
Scopus
Aquatic Science
Ecology
Ecology, Evolution, Behavior And Systematics
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Armas, Elier - Universidad de Concepción - Chile
Centro de Investigación Aplicada del Mar (CIAM) - Chile
Ctr Invest Aplicada Mar CIAM - Chile
Centro de Investigación Aplicada del Mar (CIAM Chile) - Chile
2 Arancibia, Hugo Hombre Universidad de Concepción - Chile
3 NEIRA-ALARCON, SERGIO EDUARDO Hombre Universidad de Concepción - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Universidad de Concepción
Comisión Nacional de Investigación Científica y Tecnológica
centro COPAS
Conicyt + Pai/Concurso Nacional Tesis de Doctorado en el Sector Productivo, Convocatoria 2019 + Folio
Centro COPAS Coastal ANID

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This research was funded by Conicyt + Pai/Concurso Nacional Tesis de Doctorado en el Sector Productivo, Convocatoria 2019 + Folio (T7819110004) and partially funded by Centro COPAS Coastal ANID FB210021.
This research was funded by Conicyt + Pai/Concurso Nacional Tesis de Doctorado en el Sector Productivo, Convocatoria 2019 + Folio (T7819110004) and partially funded by Centro COPAS Coastal ANID FB210021.
This research was funded by Conicyt + Pai/Concurso Nacional Tesis de Doctorado en el Sector Productivo, Convocatoria 2019 + Folio (T7819110004) and partially funded by Centro COPAS Coastal ANID FB210021.

Muestra la fuente de financiamiento declarada en la publicación.