Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1090/PROC/15988 | ||||
| Año | 2022 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We extend the class of initial conditions for scalar delayed reaction-diffusion equations ut(t, x) = uxx(t, x) + f(u(t, x), u(t − h, x)) which evolve in solutions converging to monostable traveling waves. Our approach allows to compute, in the moving reference frame, the phase distortion α of the limiting travelling wave with respect to the position of solution at the initial moment t = 0. In general, α ≠ 0 for the Mackey-Glass type diffusive equation. Nevertheless, α = 0 for the KPP-Fisher delayed equation: the related theorem also improves existing stability conditions for this model.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Solar, Abraham | Hombre |
Universidad Católica de la Santísima Concepción - Chile
|
| 2 | Trofimchuk, S. | Hombre |
Universidad de Talca - Chile
|
| Agradecimiento |
|---|
| Received by the editors July 25, 2021, and, in revised form, December 23, 2021. 2020 Mathematics Subject Classification. Primary 35C07, 35R10; Secondary 35K57. Key words and phrases. Monostable equation, delay, traveling front, non-monotone response. This work was supported by FONDECYT (Chile), projects 11190350 (A.S.), 1190712 (S.T.). The authors express their gratitude to the anonymous referee, whose valuable comments helped to improve the original version of this paper. The second author is the corresponding author. 1Bydefinition,theprofileφshouldsatisfyφ(−∞)=0,liminft→+∞φ(t)>0,supt∈Rφ(t)<∞. 2We assume everywhere that (i) u0(s, x) is bounded, globally Lipschitz continuous in x (uniformly in s) and (ii) the solution u(t, x) exists globally and is bounded on the strips [0,n]×R,n ∈ N. Note that (ii) is satisfied automatically for both models (KPP-Fisher and Nicholson’s) of the paper. |
| This work was supported by FONDECYT (Chile), projects 11190350 (A.S.), 1190712 (S.T.). |