Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1093/GIGASCIENCE/GIAC093 | ||||
| Año | 2022 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
MicroRNAs (miRNAs) are small noncoding RNAs that are key players in the regulation of gene expression. In the past decade, with the increasing accessibility of high-throughput sequencing technologies, different methods have been developed to identify miRNAs, most of which rely on preexisting reference genomes. However, when a reference genome is absent or is not of high quality, such identification becomes more difficult. In this context, we developed BrumiR, an algorithm that is able to discover miRNAs directly and exclusively from small RNA (sRNA) sequencing (sRNA-seq) data. We benchmarked BrumiR with datasets encompassing animal and plant species using real and simulated sRNA-seq experiments. The results demonstrate that BrumiR reaches the highest recall for miRNA discovery, while at the same time being much faster and more efficient than the state-of-the-art tools evaluated. The latter allows BrumiR to analyze a large number of sRNA-seq experiments, from plants or animal species. Moreover, BrumiR detects additional information regarding other expressed sequences (sRNAs, isomiRs, etc.), thus maximizing the biological insight gained from sRNA-seq experiments. Additionally, when a reference genome is available, BrumiR provides a new mapping tool (BrumiR2reference) that performs an a posteriori exhaustive search to identify the precursor sequences. Finally, we also provide a machine learning classifier based on a random forest model that evaluates the sequence-derived features to further refine the prediction obtained from the BrumiR-core. The code of BrumiR and all the algorithms that compose the BrumiR toolkit are freely available at https://github.com/camoragaq/BrumiR.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | MORAGA-QUINTEROS, CAROL FERNANDA | Mujer |
Université Claude Bernard Lyon 1 - Francia
ERABLE team - Francia Universidad de O’Higgins - Chile UNIV LYON 1 - Francia Inria Lyon Ctr - Francia Universidad de O`Higgins - Chile |
| 2 | SANCHEZ-SEPULVEDA, EVELYN | Mujer |
Universidad Mayor - Chile
Instituto Milenio de Biología Integrativa - Chile Agencia Nacl Invest & Desarrollo - Chile Millennium Institute for Integrative Biology (iBio) - Chile |
| 3 | Galvão Ferrarini, Mariana | Mujer |
Université Claude Bernard Lyon 1 - Francia
ERABLE team - Francia INSA Lyon - Francia UNIV LYON 1 - Francia Inria Lyon Ctr - Francia Univ Lyon - Francia |
| 4 | GUTIERREZ-ILABACA, RODRIGO ANTONIO | Hombre |
Instituto Milenio de Biología Integrativa - Chile
Pontificia Universidad Católica de Chile - Chile Instituto de Ecologia y Biodiversidad - Chile Agencia Nacl Invest & Desarrollo - Chile Fondo Desarrollo Areas Prioritarias - Chile Millennium Institute for Integrative Biology (iBio) - Chile |
| 5 | VIDAL-OLATE, ELENA ALEJANDRA | Mujer |
Universidad Mayor - Chile
Instituto Milenio de Biología Integrativa - Chile Agencia Nacl Invest & Desarrollo - Chile Millennium Institute for Integrative Biology (iBio) - Chile |
| 6 | Sagot, Marie France | Mujer |
Université Claude Bernard Lyon 1 - Francia
ERABLE team - Francia UNIV LYON 1 - Francia Inria Lyon Ctr - Francia |
| Fuente |
|---|
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Agence Nationale de la Recherche |
| CONICYT BECAS |
| Agence National de Recherche |
| ANID-Millennium Science Initiative Program |
| ANID-Millennium |
| Fondo Nacional de Desarrollo Cientifico y Tecnologico (FONDECYT)-ANID grants |
| ANID PCI-Redes Internacionales entre Centros de Investigacion grant |
| CONICYT BECAS CHILE DOCTORADO |
| Agradecimiento |
|---|
| This work was supported by CONICYT BECAS CHILE DOCTORADO 2016/FOLIO 72170320 granted to C.M., by a postdoctorate fellowship from the Agence National de Recherche (ANR-GREEN 17_CE20_0031_01) granted to M.G.F., and by Fondo Nacional de Desarrollo Cientifico y Tecnologico (FONDECYT)-ANID grants 1170926 and 1211130, ANID PCI-Redes Internacionales entre Centros de Investigacion grant REDES180097, ANID-Millennium Science Initiative Program-ICN17_022, and ANID/ACT210007 to E.A.V. |
| Funding This work was supported by CONICYT BECAS CHILE DOCTORADO 2016/FOLIO 72170320 granted to C.M., by a postdoctorate fellowship from the Agence National de Recherche (ANR-GREEN 17_CE20_0031_01) granted to M.G.F., and by Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT)-ANID grants 1170926 and 1211130, ANID PCI-Redes Internacionales entre Centros de Investigación grant REDES180097, ANID-Millennium Science Initiative Program-ICN17_022, and ANID/ACT210007 to E.A.V |