Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1002/JGT.22897 | ||||
| Año | 2023 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
In this paper and a companion paper, we prove that, if m $m$ is sufficiently large, every graph on m + 1 $m+1$ vertices that has a universal vertex and minimum degree at least L 2 m 3 RIGHT FLOOR $\lfloor \phantom{\rule[-0.5em]{}{0ex}}\frac{2m}{3}\rfloor $ contains each tree T $T$ with m $m$ edges as a subgraph. Our result confirms, for large m $m$, an important special case of a recent conjecture by Havet, Reed, Stein and Wood. The present paper already contains an approximate version of the result.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Reed, Bruce | Hombre |
Univ Victoria - Canadá
University of Victoria - Canadá |
| 2 | Stein, M. | Mujer |
Universidad de Chile - Chile
|
| Fuente |
|---|
| Natural Sciences and Engineering Research Council of Canada |
| NSERC |
| Agencia Nacional de Investigación y Desarrollo |
| FAPESP-ANID |
| ANID Regular Grant |
| ANID PIA CMM |
| FAPESP-ANID Investigacion Conjunta grant |
| FAPESP‐ANID Investigación Conjunta |
| Agradecimiento |
|---|
| Research supported by NSERC. Research supported by ANID Regular Grant 1221905, by FAPESP-ANID Investigacion Conjunta grant 2019/13364-7, and by ANID PIA CMM FB210005. |
| Research supported by NSERC. Research supported by ANID Regular Grant 1221905, by FAPESP‐ANID Investigación Conjunta grant 2019/13364‐7, and by ANID PIA CMM FB210005. |