Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1007/S00526-022-02318-0 | ||||
| Año | 2022 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We prove discrete-to-continuum convergence of interaction energies defined on lattices in the Euclidean space (with interactions beyond nearest neighbours) to a crystalline perimeter, and we discuss the possible Wulff shapes obtainable in this way. Exploiting the "multigrid construction" of quasiperiodic tilings (which is an extension of De Bruijn's "pentagrid" construction of Penrose tilings) we adapt the same techniques to also find the macroscopical homogenized perimeter when we microscopically rescale a given quasiperiodic tiling.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Del Nin, Giacomo | Hombre |
Univ Warwick - Reino Unido
Faculty of Science, Engineering and Medicine - Reino Unido |
| 2 | Petrache, Mircea | Hombre |
Pontificia Universidad Católica de Chile - Chile
Facultad de Matemáticas - Chile |
| Fuente |
|---|
| FONDECYT Iniciación |
| Fondecyt Regular |
| European Research Council |
| European Research Council (ERC) under the European Union |
| Horizon 2020 Framework Programme |
| Chilean FONDECYT Regular Grant |
| Chilean FONDECYT Iniciacion grant |
| Agradecimiento |
|---|
| Giacomo Del Nin has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme under grant agreement No 757254 (SINGULARITY). Mircea Petrache was supported by the Chilean Fondecyt Iniciacion grant number 11170264 entitled "Sharp asymptotics for large particle systems and topological singularities" and by the Chilean Fondecyt Regular grant number 1210426 entitled "Rigidity, stability and uniformity for large point configurations". |
| Giacomo Del Nin has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under grant agreement No 757254 (SINGULARITY). Mircea Petrache was supported by the Chilean Fondecyt Iniciación grant number 11170264 entitled “Sharp asymptotics for large particle systems and topological singularities” and by the Chilean Fondecyt Regular grant number 1210426 entitled “Rigidity, stability and uniformity for large point configurations”. |