Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Energy Optimization of Air Handling Units Using Constrained Predictive Controllers Based on Dynamic Neural Networks
Indexado
WoS WOS:000805824500001
Scopus SCOPUS_ID:85130815499
DOI 10.1109/ACCESS.2022.3177660
Año 2022
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Optimizing energy consumption in buildings is a significant challenge in today's society. A major part of energy consumption is in heating, ventilation and air conditioning (HVAC) systems. In this paper, the aim is to reduce the energy consumption of air handling units (AHU) by applying optimal control. This system used in this study has four AHUs, all of which are assumed to be the same. Due to the uncertainty of the temperature of the heat exchanger's (H/E) inlet and outlet water, a model of the system was first made using its hypothetical capacity according to the ASHRAE standards. The inlet and outlet water temperatures are calculated using simulated and real data. In order to increase the model's accuracy and facilitate implementation on a real system, the data obtained is used to train a dynamic recurrent neural network (RNN) for the H/E. Furthermore, to increase the system's stability and bolster its response to disturbances, which change system parameters over time and reduce the accuracy of neural network models, an online recursive least squares (RLS-based) adaptive constrained generalized predictive controller (AGPC) is used to control its outlet air temperature. The AGPC attempts to minimize the computational load and estimates the transfer function by using continuously updated input-output data from the model; this model has fewer parameters than the RNN model. Finally, the power consumption of the H/E is calculated. The outlet humidity and airflow are controlled using an optimal controller to minimize energy consumption. The results show a reduction in the energy consumption of 54.95% with respect to the previous work and of 69.9% compared to the dataset from the real system.

Revista



Revista ISSN
Ieee Access 2169-3536

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Computer Science, Information Systems
Telecommunications
Engineering, Electrical & Electronic
Scopus
Materials Science (All)
Computer Science (All)
Engineering (All)
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Asvadi-Kermani, Omid Hombre Tarbiat Modares University - Iran
Tarbiat Modares Univ - Iran
2 Momeni, Hamidreza - Tarbiat Modares University - Iran
Tarbiat Modares Univ - Iran
3 Justo, Andrea Mujer Universitat Autònoma de Barcelona - España
UNIV AUTONOMA BARCELONA - España
4 Guerrero, Josep M. Hombre Aalborg University - Dinamarca
Aalborg Univ - Dinamarca
5 Vasquez, Juan C. Hombre Aalborg University - Dinamarca
Aalborg Univ - Dinamarca
6 RODRIGUEZ-PEREZ, JOSE RAMON Hombre Universidad San Sebastián - Chile
7 Khan, Baseem - Hawassa University - Etiopía
Hawassa Univ - Etiopía

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
ANID
VILLUM FONDEN through the VILLUM Investigator Grant: Center for Research on Microgrids (CROM)

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This work was supported by the VILLUM FONDEN through the VILLUM Investigator Grant: Center for Research on Microgrids (CROM) (www.crom.et.aau.dk) under Grant 25920. The work of Jose Rodriguez supported by ANID under Project FB0008 and Project 1210208.

Muestra la fuente de financiamiento declarada en la publicación.