Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1007/S00454-022-00395-8 | ||||
| Año | 2022 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Let S be a set of n points in general position in the plane, and let Xk,ℓ(S) be the number of convex k-gons with vertices in S that have exactly ℓ points of S in their interior. We prove several equalities for the numbers Xk,ℓ(S). This problem is related to the Erdős–Szekeres theorem. Some of the obtained equations also extend known equations for the numbers of empty convex polygons to polygons with interior points. Analogous results for higher dimension are shown as well.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Huemer, Clemens | Hombre |
Universitat Politècnica de Catalunya - España
Univ Politecn Cataluna - España |
| 2 | Oliveros, Deborah | Mujer |
UNAM campus Juriquilla - México
Univ Nacl Autonoma Mexico - México |
| 3 | Perez-Lantero, Pablo | Hombre |
Universidad de Santiago de Chile - Chile
|
| 4 | Torra, Ferran | Hombre |
Universitat Politècnica de Catalunya - España
Univ Politecn Cataluna - España |
| 5 | Vogtenhuber, Birgit | Mujer |
Graz University of Technology, Institute of Software Technology - Austria
Graz Univ Technol - Austria |
| Fuente |
|---|
| Consejo Nacional de Ciencia y Tecnología |
| Ministerio de Economía y Competitividad |
| European Regional Development Fund |
| Austrian Science Fund |
| Horizon 2020 Framework Programme |
| Desarrollo e Innovación USACH |
| Graz University of Technology |
| Agradecimiento |
|---|
| This project has been supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska Curie grant agreement No 734922. |
| This project has been supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska Curie grant agreement No 734922. |
| Open access funding provided by the Graz University of Technology. |