Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Interactions of Gas Particles with Graphene during High-Throughput Compressible Flow Exfoliation: A Molecular Dynamics Simulations Study
Indexado
WoS WOS:000821162100001
Scopus SCOPUS_ID:85131697360
DOI 10.1021/ACS.JPCC.2C00425
Año 2022
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



The field of two-dimensional (2D) nanomaterials has gained significant interest over the last few decades in numerous applications because of their unique properties that exhibit when a bulk material is reduced to its 2D form. A wide variety of 2D layered materials are synthesized by a newly developed compressible flow exfoliation (CFE) process, which has considerable advantages over current top-down approaches. In this study, classical molecular dynamics (MD) simulations are used to investigate the interactions of gas particles with pristine, unfunctionalized graphene sheets during the CFE process and try to understand the atomistic mechanism of layer separation. The thermal vibration of graphene layers increases with the elevation of temperature that accelerates the exfoliation tendency, but the presence of static gas particles is insignificant here because of their lower binding energy. The range of one-directional flow velocities is incorporated to the compressible gases to replicate the experimental situation, and dispersion of graphene is observed when the velocity exceeds the supersonic flow condition. Analyzing the dynamic properties of exfoliation, it is established that sliding or the parallel direction is the preferable exfoliation mechanism of graphene than vertical separation. Besides, the upstream pressure plays a fundamental role because gas density and flow velocity are associated with that. It is also observed that heavier gas is less susceptible to delaminate graphene than lighter gas because of their higher atomic mass and lower flow rate at identical conditions. The findings of this study provide more flexibility to synthesize not only graphene but any 2D materials using compressible gases.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Chemistry, Physical
Materials Science, Multidisciplinary
Nanoscience & Nanotechnology
Scopus
Electronic, Optical And Magnetic Materials
Energy (All)
Physical And Theoretical Chemistry
Surfaces, Coatings And Films
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Ahmed, Shafkat - The University of Toledo - Estados Unidos
Univ Toledo - Estados Unidos
College of Engineering - Estados Unidos
2 Arabha, Saeed Hombre York University - Canadá
York Univ - Canadá
Lassonde School of Engineering - Canadá
3 GONZALEZ-VALDES, RAFAEL IGNACIO Hombre Universidad Mayor - Chile
Centro para el Desarrollo de la Nanociencia y la Nanotecnologia - Chile
4 Rizvi, Reza Hombre The University of Toledo - Estados Unidos
York University - Canadá
York Univ - Canadá
Univ Toledo - Estados Unidos
College of Engineering - Estados Unidos
Lassonde School of Engineering - Canadá

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
National Science Foundation
Financiamiento Basal para Centros Científicos y Tecnológicos de Excelencia
Natural Sciences and Engineering Research Council of Canada
Fondo Nacional de Investigaciones Cientificas y Tecnologicas (FONDECYT, Chile)
National Laboratory for High Performance Computing (Chile)
Fondo Nacional de Investigaciones Cientificas y Tecnologicas
National Laboratory for High Performance Computing ECM-02
Canadian National Science and Engineering Research Council (NSERC) Discovery Grant Program
supercomputing infrastructure of the Ohio Supercomputer Center (USA)
Compute Canada.SharcNet (Canada)
US National Science Foundation's Nanomanufacturing Program (CMMI Award)

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This work was supported by the US National Science Foundation’s Nanomanufacturing Program (CMMI Award # 1762507), as well as the Canadian National Science and Engineering Research Council (NSERC) Discovery Grant Program (Award # RGPIN-2019-06345). Furthermore, this work was supported by the Fondo Nacional de Investigaciones Cientificas y Tecnologicas (FONDECYT, Chile) #11180557 and Financiamiento Basal para Centros Científicos y Tecnológicos de Excelencia AFB180001. Computational resources for this research were partially supported by the supercomputing infrastructure of the Ohio Supercomputer Center (USA), Compute Canada─SharcNet (Canada), and National Laboratory for High Performance Computing─ECM-02 (Chile).
This work was supported by the US National Science Foundation’s Nanomanufacturing Program (CMMI Award # 1762507), as well as the Canadian National Science and Engineering Research Council (NSERC) Discovery Grant Program (Award # RGPIN-2019-06345). Furthermore, this work was supported by the Fondo Nacional de Investigaciones Cientificas y Tecnologicas (FONDECYT, Chile) #11180557 and Financiamiento Basal para Centros Científicos y Tecnológicos de Excelencia AFB180001. Computational resources for this research were partially supported by the supercomputing infrastructure of the Ohio Supercomputer Center (USA), Compute Canada─SharcNet (Canada), and National Laboratory for High Performance Computing─ECM-02 (Chile).
This work was supported by the US National Science Foundation's Nanomanufacturing Program (CMMI Award #1762507), as well as the Canadian National Science and Engineering Research Council (NSERC) Discovery Grant Program (Award #RGPIN-2019-06345). Furthermore, this work was supported by the Fondo Nacional de Investigaciones Cientificas y Tecnologicas (FONDECYT, Chile) #11180557 and Financiamiento Basal para Centros Cientificos y Tecnologicos de Excelencia AFB180001. Computational resources for this research were partially supported by the supercomputing infrastructure of the Ohio Supercomputer Center (USA), Compute Canada.SharcNet (Canada), and National Laboratory for High Performance Computing. ECM-02 (Chile).

Muestra la fuente de financiamiento declarada en la publicación.