Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1007/S40314-022-01912-4 | ||||
| Año | 2022 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
The seminal works by George Matheron provide the foundations of walks through dimensions for positive definite functions defined in Euclidean spaces. For a d-dimensional space and a class of positive definite functions therein, Matheron called montée and descente two operators that allow for obtaining new classes of positive definite functions in lower and higher dimensional spaces, respectively. The present work examines three different constructions to dimension walks for continuous positive definite functions on hyperspheres. First, we define montée and descente operators on the basis of the spectral representation of isotropic covariance functions on hyperspheres. The second approach provides walks through dimensions following Yadrenko’s construction of random fields on spheres. Under this approach, walks through unit dimensions are not permissible, while it is possible to walk under ± 2 dimensions from a covariance function that is valid on a d-dimensional sphere. The third construction relies on the integration of a given isotropic random field over latitudinal arcs. In each approach, we provide spectral representations of the montée and descente as well as illustrative examples.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Emery, Xavier M. | Hombre |
Universidad de Chile - Chile
Advanced Mining Technology Center - Chile Centro Avanzado de Tecnologia para la Mineria - Chile |
| 2 | Peron, Ana Paula | Mujer |
Universidade de São Paulo - Brasil
UNIV SAO PAULO - Brasil |
| 3 | Porcu, Emilio | Hombre |
Khalifa University of Science and Technology - Emiratos Árabes Unidos
Trinity College Dublin - Irlanda Khalifa Univ - Emiratos Árabes Unidos Trinity Coll Dublin - Irlanda |
| Fuente |
|---|
| Fundação de Amparo à Pesquisa do Estado de São Paulo |
| Fundacao de Amparo a Pesquisa do Estado de Sao Paulo - FAPESP |
| National Agency for Research and Development of Chile |
| Agradecimiento |
|---|
| The first author acknowledges the funding of the National Agency for Research and Development of Chile, through grants ANID/FONDECYT/REGULAR/1210050 and ANID PIA AFB180004. The second author was partially supported by Fundação de Amparo à Pesquisa do Estado de São Paulo - FAPESP, # 2021/04269-0. |
| The first author acknowledges the funding of the National Agency for Research and Development of Chile, through grants ANID/FONDECYT/REGULAR/1210050 and ANID PIA AFB180004. The second author was partially supported by FundacAo de Amparo a Pesquisa do Estado de SAo Paulo - FAPESP, # 2021/04269-0. |