Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Preference estimation under bounded rationality: Identification of attribute non-attendance in stated-choice data using a support vector machines approach
Indexado
WoS WOS:000880403600012
Scopus SCOPUS_ID:85132666602
DOI 10.1016/J.EJOR.2022.04.018
Año 2023
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Stated-choice experiments have been useful in helping to make a number of operations management decisions. Many recent advances in this area have raised questions about estimating consumers’ preferences when they partially ignore the information provided in discrete choice experiments, a problem introduced as attribute non-attendance (ANA). This line of research explores the consequences of assuming that consumers consider all available information concerning attributes to evaluate product alternatives, when in fact, they might ignore some attributes completely. Diverse choice models, such as latent class models, have been developed to accommodate ANA using choice data. Due to the combinatorial nature of such an approach, researchers typically explore a limited number of specifications. Furthermore, although diverse modeling approaches have been proposed to accommodate ANA, no research has investigated the capability of these approaches to correctly identify ANA at the individual level. In this work, we propose the use of a machine learning approach based on support vector machines to identify ANA at the individual level and to predict consumer choices in conjoint experiments. We conduct an extensive simulation study varying the degree of non-attendance and the noise in the choice data to investigate the performance of the proposed approach. Our results with simulated data show good performance in terms of the identification of attended and non-attended attributes. We test our approach in two empirical applications and compare it to state-of-the-art benchmarks in the field. We demonstrate the usefulness and the alternative insights derived from our method.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Operations Research & Management Science
Scopus
Computer Science (All)
Management Science And Operations Research
Modeling And Simulation
Information Systems And Management
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Díaz, Verónica Mujer Universidad de Antofagasta - Chile
2 MONTOYA-MOREIRA, RICARDO ESTEBAN Hombre Instituto Sistemas Complejos de Ingeniería - Chile
Pontificia Universidad Católica de Chile - Chile
3 MALDONADO-ALARCON, SEBASTIAN ALEJANDRO Hombre Universidad de Chile - Chile
Instituto Sistemas Complejos de Ingeniería - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
FONDECYT
Fondo Nacional de Desarrollo Científico y Tecnológico
Comisión Nacional de Investigación Científica y Tecnológica
CONICYT PIA/BASAL
supercomputing infrastructure of the NLHPC

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
The authors would like to extend special thanks to Martin Meißner and Liu (Cathy) Yang for sharing the data that were imperative for the empirical applications. The authors gratefully acknowledge financial support from CONICYT PIA/BASAL AFB180003. The second author also acknowledges partial funding by Fondecyt 1211020. The third author also acknowledges partial funding by Fondecyt 1200221. Powered@NLHPC: This research was partially supported by the supercomputing infrastructure of the NLHPC (ECM-02).
The authors would like to extend special thanks to Martin MeiBner and Liu (Cathy) Yang for sharing the data that were imperative for the empirical applications. The authors gratefully acknowledge financial support from CONICYT PIA/BASAL AFB180003. The second author also acknowledges partial funding by Fondecyt 1211020. The third author also acknowledges partial funding by Fondecyt 1200221. Powered@NLHPC: This research was partially supported by the supercomputing infrastructure of the NLHPC (ECM-02).

Muestra la fuente de financiamiento declarada en la publicación.