Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



A recursive time aggregation-disaggregation heuristic for the multidimensional and multiperiod precedence-constrained knapsack problem: An application to the open-pit mine block sequencing problem
Indexado
WoS WOS:000877418600007
Scopus SCOPUS_ID:85132668946
DOI 10.1016/J.EJOR.2022.04.005
Año 2022
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



A recursive time aggregation-disaggregation (RAD) heuristic is proposed to solve large-scale multidimensional and multiperiod precedence-constrained knapsack problems (MMPKP) in which a profit is maximized by filling the knapsack in multiple periods while satisfying minimum and maximum resource consumption constraints per period as well as precedence constraints between items. An important strategic planning application of the MMPKP in the mining industry is the well-known open-pit mine block sequencing problem (BSP). In the BSP, a mine is modeled as a three-dimensional grid of blocks to determine a block extraction sequence that maximizes the net present value while satisfying constraints on the shape of the mine and resource consumption over time. Large real-life instances of this problem are difficult to solve, particularly with lower bounds on resource consumption. The advantage of the time aggregation-disaggregation heuristic over a rolling-horizon-based time decomposition is twofold: first, the entire horizon is considered for the resource consumption from the first aggregation; and second, only two-period subproblems have to be solved. This method is applied to a well-known integer programming model and a variant thereof in which blocks can be extracted in parts over multiple periods. Tests on benchmark instances show that near-optimal solutions for both of the models can be obtained for extremely large instances with up to 2,340,142 blocks and 10 periods.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Operations Research & Management Science
Scopus
Computer Science (All)
Management Science And Operations Research
Modeling And Simulation
Information Systems And Management
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Nancel-Penard, Pierre Hombre Universidad de Chile - Chile
Advanced Mining Technology Center - Chile
Centro Avanzado de Tecnologia para la Mineria - Chile
2 Morales, Nelson Hombre Polytechnique Montréal - Canadá
Polytech Montreal - Canadá
3 Cornillier, Fabien Hombre Universidad Nacional de Ingenieria, Lima - Perú
Centre Interuniversitaire de Recherche sur les Réseaux d‘Entreprise, la Logistique et le Transport - Canadá
Univ Ingn & Tecnol UTEC - Perú
CIRRELT - Canadá

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Agencia Nacional de Investigación y Desarrollo
Prix Inspiration Arctique
ANID/PIA Project

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This work was partially funded by the ANID / PIA Project AFB180004. We thank José Fernando da Costa Oliveira and the three anonymous reviewers for their valuable comments and suggestions on earlier versions of this paper.
This work was partially funded by the ANID/PIA Project AFB180004. We thank JoseFernando da Costa Oliveira and the three anonymous reviewers for their valuable comments and suggestions on earlier versions of this paper.

Muestra la fuente de financiamiento declarada en la publicación.