Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1063/5.0082981 | ||||
| Año | 2022 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Consider hard balls in a bounded rotating drum. If there is no gravitation, then there is no Fermi acceleration, i.e., the energy of the balls remains bounded forever. If there is gravitation, Fermi acceleration may arise. A number of explicit formulas for the system without gravitation are given. Some of these are based on an explicit realization, which we derive, of the well-known microcanonical ensemble measure.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Burdzy, Krzysztof | Hombre |
University of Washington - Estados Unidos
UNIV WASHINGTON - Estados Unidos |
| 2 | Duarte, Mauricio | Hombre |
Universidad Nacional Andrés Bello - Chile
|
| 3 | Gauthier, Carl Erik | Hombre |
University of Washington - Estados Unidos
UNIV WASHINGTON - Estados Unidos |
| 4 | Graham, C. Robin | - |
University of Washington - Estados Unidos
UNIV WASHINGTON - Estados Unidos |
| 5 | SAN MARTIN-ARISTEGUI, JAIME RICARDO | Hombre |
Universidad de Chile - Chile
|
| Fuente |
|---|
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Basal |
| Fondecyt Regular Project |
| Simons Foundation |
| Centro de Modelamiento Matematico (CMM) |
| BASAL funds for centers of excellence from ANID-Chile |
| Agradecimiento |
|---|
| The authors are grateful to Martin Hairer, Robert Hołyst, Domokos Szász, and Balint Toth for very helpful advice. K.B.’s research was supported, in part, by the Simons Foundation under Grant No. 506732. M.D. was supported by the FONDECYT Regular Project (No. 1201639) and Centro de Modelamiento Matemático (CMM), Grant Nos. ACE210010 and FB210005, BASAL funds for centers of excellence from ANID-Chile. J.S.M. acknowledges partial support from BASAL under Grant No. FB210005-ACE210010. |
| The authors are grateful to Martin Hairer, Robert Holyst, Domokos Szasz, and Balint Toth for very helpful advice. K.B.'s research was supported, in part, by the Simons Foundation under Grant No. 506732. M.D. was supported by the FONDECYT Regular Project (No. 1201639) and Centro de Modelamiento Matematico (CMM), Grant Nos. ACE210010 and FB210005, BASAL funds for centers of excellence from ANID-Chile. J.S.M. acknowledges partial support from BASAL under Grant No. FB210005-ACE210010. |