Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Study of primary and secondary instabilities arising due to a chemical reaction in a two-component Rayleigh-B?nard system
Indexado
WoS WOS:000831243200003
Scopus SCOPUS_ID:85134614521
DOI 10.1016/J.APM.2022.07.003
Año 2022
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Manifestation of stationary and oscillatory convection and secondary instabilities due to a chemical reaction in a two-component convective fluid system is reported in the paper by considering idealistic as well as physically realistic boundaries. Using a normal mode solution, analytical expression of the critical Rayleigh number for a stationary and oscillatory disturbances, and the natural frequency are reported. The range of parameters is identified where oscillatory motion happens. Further, the parameters’ range for existence of oscillatory regime is found to be larger for rigid boundaries compared to that of free boundaries. Furthermore, for both the boundaries, parameters’ range for this regime increases when the chemical reaction rate increases, leading to the conclusion that the oscillatory motion emerges as the most preferred mode in the two-component system due to the presence of a chemical reaction and the size of this domain is directly proportional to the chemical reaction rate. The marginal stability plots depict that the oscillatory and stationary regimes respectively correspond to Hopf and direct pitchfork bifurcations. The critical Rayleigh number and the wave number where codimension two bifurcation exists are documented in the paper for fixed values of parameters. It is shown that the codimension two bifurcation that arose in the problem is not a Takens–Bogdanov bifurcation. In a stationary regime, the domain for secondary instabilities of Eckhaus and zigzag is obtained using the spatio-temporal Newell–Whitehead–Segel equation. These instabilities grow with increasing chemical reaction rate. In the oscillatory regime, the complex Ginzburg–Landau equation is used to predict the appearance of the Benjamin–Feir instability.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Engineering, Multidisciplinary
Mechanics
Mathematics, Interdisciplinary Applications
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Kanchana, C. - Universidad de Tarapacá - Chile
2 LAROZE-NAVARRETE, DAVID NICOLAS Hombre Universidad de Tarapacá - Chile
3 Siddheshwar, P. G. - Universidad de Tarapacá - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
FONDECYT
Universidad de Tarapacá
CEDENNA
Fondo Nacional de Desarrollo Científico y Tecnológico
Centers of excellence
Centers of excellence with BASAL/ANID
Department of Chemistry, University of York
Christ University

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
K.C. and P.G.S. are grateful to the Universidad de Tarapacá, Chile for supporting their research work. D.L. acknowledges partial financial support from Centers of Excellence with BASAL/ANID financing, Grant nos. AFB180001, CEDENNA, and FONDECYT 1180905. We thank Prof. Sunaja Devi K. R. of the Department of Chemistry, Christ University, Bengaluru, India for helpful discussions on chemical reactions. We are also grateful to the Editor and the Reviewers for their comments that improved our understanding of chemical reactions.
K.C. and P.G.S. are grateful to the Universidad de Tarapaca, Chile for supporting their research work. D.L. acknowledges partial financial support from Centers of Excellence with BASAL/ANID financing, Grant nos. AFB180001, CEDENNA, and FONDECYT 1180905. We thank Prof. Sunaja Devi K. R. of the Department of Chemistry, Christ University, Bengaluru, India for helpful discussions on chemical reactions. We are also grateful to the Editor and the Reviewers for their comments that improved our understanding of chemical reactions.

Muestra la fuente de financiamiento declarada en la publicación.