Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.3233/ASY-181467 | ||||
| Año | 2018 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We consider harmonic Toeplitz operators T-V = PV :H(Omega) -> H(Omega) where P : L-2(Omega) -> H(Omega) is the orthogonal projection onto H(Omega) = {u is an element of L-2 (Omega)) vertical bar Delta u = 0 in Omega}, Omega subset of R-d, d >= 2, is a bounded domain with boundary partial derivative Omega is an element of C-infinity and V : Omega -> C is an appropriate multiplier. First, we complement the known criteria which guarantee that T-V is in the pth Schatten-von Neumann class S-p, by simple sufficient conditions which imply T-V is an element of S-p(,w), the weak counterpart of S-p. Next, we consider symbols V >= 0 which have a regular power-like decay of rate & nbsp;gamma > 0 at partial derivative Omega, and we show that T-V is unitarily equivalent to a classical pseudo-differential operator of order-gamma, self-adjoint in L-2 (partial derivative Omega). Utilizing this unitary equivalence, we obtain the main asymptotic term of the eigenvalue counting function for T-V, and establish a sharp remainder estimate. Further, we assume that Omega is the unit ball in R-d, and V = (V) over bar is compactly supported in Omega, and investigate the eigenvalue asymptotics of the Toeplitz operator T-V. Finally, we introduce the Krein Laplacian K, self-adjoint in L-2 (Omega), perturb it by a multiplier V is an element of C((Omega) over bar; R), and show that sigma(ess)(K + V) = V (partial derivative Omega). Assuming that V >= 0 and V-vertical bar partial derivative Omega = 0, we study the asymptotic distribution of the discrete spectrum of K +/- V near the origin, and find that the effective Hamiltonian which governs this distribution is the Toeplitz operator T-V.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Bruneau, Vincent | Hombre |
Univ Bordeaux - Francia
Université de Bordeaux - Francia |
| 2 | Raikov, Georgi | Hombre |
Pontificia Universidad Católica de Chile - Chile
Facultad de Matemáticas - Chile |
| Fuente |
|---|
| Chilean Scientific Foundation Fondecyt |
| Institute of Mathematics, Bulgarian Academy of Sciences |
| Bulgarian Academy of Sciences |
| Universite de Bordeaux |
| Université de Bordeaux |
| French Research Project |
| IDEX of the University of Bordeaux, France |
| Institute of Mathematics |
| Agradecimiento |
|---|
| The second author thanks the IDEX of the University of Bordeaux, France, and the Institute of Mathematics, Bulgarian Academy of Sciences, for hospitality and financial support. |
| Both authors gratefully acknowledge the partial support of the French Research Project ANR-2011-BS01019-01 and of the Chilean Scientific Foundation Fondecyt under Grant 1170816. The second author thanks the IDEX of the University of Bordeaux, France, and the Institute of Mathematics, Bulgarian Academy of Sciences, for hospitality and financial support. |