Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Spectral properties of harmonic Toeplitz operators and applications to the perturbed Krein Laplacian
Indexado
WoS WOS:000445000100003
Scopus SCOPUS_ID:85053875788
DOI 10.3233/ASY-181467
Año 2018
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



We consider harmonic Toeplitz operators T-V = PV :H(Omega) -> H(Omega) where P : L-2(Omega) -> H(Omega) is the orthogonal projection onto H(Omega) = {u is an element of L-2 (Omega)) vertical bar Delta u = 0 in Omega}, Omega subset of R-d, d >= 2, is a bounded domain with boundary partial derivative Omega is an element of C-infinity and V : Omega -> C is an appropriate multiplier. First, we complement the known criteria which guarantee that T-V is in the pth Schatten-von Neumann class S-p, by simple sufficient conditions which imply T-V is an element of S-p(,w), the weak counterpart of S-p. Next, we consider symbols V >= 0 which have a regular power-like decay of rate & nbsp;gamma > 0 at partial derivative Omega, and we show that T-V is unitarily equivalent to a classical pseudo-differential operator of order-gamma, self-adjoint in L-2 (partial derivative Omega). Utilizing this unitary equivalence, we obtain the main asymptotic term of the eigenvalue counting function for T-V, and establish a sharp remainder estimate. Further, we assume that Omega is the unit ball in R-d, and V = (V) over bar is compactly supported in Omega, and investigate the eigenvalue asymptotics of the Toeplitz operator T-V. Finally, we introduce the Krein Laplacian K, self-adjoint in L-2 (Omega), perturb it by a multiplier V is an element of C((Omega) over bar; R), and show that sigma(ess)(K + V) = V (partial derivative Omega). Assuming that V >= 0 and V-vertical bar partial derivative Omega = 0, we study the asymptotic distribution of the discrete spectrum of K +/- V near the origin, and find that the effective Hamiltonian which governs this distribution is the Toeplitz operator T-V.

Revista



Revista ISSN
Asymptotic Analysis 0921-7134

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Mathematics, Applied
Scopus
Mathematics (All)
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Bruneau, Vincent Hombre Univ Bordeaux - Francia
Université de Bordeaux - Francia
2 Raikov, Georgi Hombre Pontificia Universidad Católica de Chile - Chile
Facultad de Matemáticas - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Chilean Scientific Foundation Fondecyt
Institute of Mathematics, Bulgarian Academy of Sciences
Bulgarian Academy of Sciences
Universite de Bordeaux
Université de Bordeaux
French Research Project
IDEX of the University of Bordeaux, France
Institute of Mathematics

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
The second author thanks the IDEX of the University of Bordeaux, France, and the Institute of Mathematics, Bulgarian Academy of Sciences, for hospitality and financial support.
Both authors gratefully acknowledge the partial support of the French Research Project ANR-2011-BS01019-01 and of the Chilean Scientific Foundation Fondecyt under Grant 1170816. The second author thanks the IDEX of the University of Bordeaux, France, and the Institute of Mathematics, Bulgarian Academy of Sciences, for hospitality and financial support.

Muestra la fuente de financiamiento declarada en la publicación.