Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1371/JOURNAL.PONE.0259756 | ||||
| Año | 2022 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Applications of network theory to microbial ecology are an emerging and promising approach to understanding both global and local patterns in the structure and interplay of these microbial communities. In this paper, we present an open-source python toolbox which consists of two modules: on one hand, we introduce a visualization module that incorporates the use of UMAP, a dimensionality reduction technique that focuses on local patterns, and HDBSCAN, a clustering technique based on density; on the other hand, we have included a module that runs an enhanced version of the SparCC code, sustaining larger datasets than before, and we couple the resulting networks with network theory analyses to describe the resulting co-occurrence networks, including several novel analyses, such as structural balance metrics and a proposal to discover the underlying topology of a co-occurrence network. We validated the proposed toolbox on 1) a simple and well described biological network of kombucha, consisting of 48 ASVs, and 2) we validate the improvements of our new version of SparCC. Finally, we showcase the use of the MicNet toolbox on a large dataset from Archean Domes, consisting of more than 2,000 ASVs. Our toolbox is freely available as a github repository (https://github.com/Labevo/MicNet Toolbox), and it is accompanied by a web dashboard (http://micnetapplb-1212130533.useast-1.elb.amazonaws.com) that can be used in a simple and straightforward manner with relative abundance data. This easy-to-use implementation is aimed to microbial ecologists with little to no experience in programming, while the most experienced bioinformatics will also be able to manipulate the source code's functions with ease.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Favila, Natalia | Mujer |
Ixulabs - México
Laboratorio de Inteligencia Artificial - México |
| 2 | Madrigal-Trejo, David | Hombre |
Univ Nacl Autonoma Mexico - México
Instituto de Ecología, UNAM - México |
| 3 | Legorreta, Daniel | Hombre |
Ixulabs - México
Laboratorio de Inteligencia Artificial - México |
| 4 | Sanchez-Perez, Jazmin | Mujer |
Univ Nacl Autonoma Mexico - México
Instituto de Ecología, UNAM - México |
| 5 | Espinosa-Asuar, Laura | Mujer |
Univ Nacl Autonoma Mexico - México
Instituto de Ecología, UNAM - México |
| 6 | Eguiarte, Luis E. | Hombre |
Univ Nacl Autonoma Mexico - México
Instituto de Ecología, UNAM - México |
| 7 | Souza, Valeria | Mujer |
Univ Nacl Autonoma Mexico - México
Centro de Estudios del Cuaternario Fuego-Patagonia y Antártica - Chile Instituto de Ecología, UNAM - México |
| Fuente |
|---|
| Consejo Nacional de Ciencia y Tecnología |
| Direccion General de Asuntos del Personal Academico, Universidad Nacional Autonoma de Mexico |
| UNAM-PAPIIT |
| Laboratorio de Inteligencia Artificial, Ixulabs |
| Laboratorio de Inteligencia Artificial |
| Agradecimiento |
|---|
| We thank Laboratorio de Inteligencia Artificial, Ixulabs, for funding acquisition, Diego Nava for his contributions in the conceptualization, and Julian Trejo and Diana Fernandez Rosales for their contribution in the elaboration of the artwork. We also thank Rosalinda Tapia and Erika Aguirre for their technical support. |
| This research was supported by DGAPA/ UNAM-PAPIIT Project IG200319, CEQUA project ANID R20F0009, and PhD scholarship 970341 granted to J.S.P. by Consejo Nacional de Ciencia y Tecnologia (CONACyT). We thank Laboratorio de Inteligencia Artificial, Ixulabs, for funding acquisition, Diego Nava for his contributions in the conceptualization, and Julian Trejo and Diana Fernandez Rosales for their contribution in the elaboration of the artwork. We also thank Rosalinda Tapia and Erika Aguirre for their technical support. |