Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



MicNet toolbox: Visualizing and unraveling a microbial network
Indexado
WoS WOS:000830362700079
Scopus SCOPUS_ID:85132866340
DOI 10.1371/JOURNAL.PONE.0259756
Año 2022
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Applications of network theory to microbial ecology are an emerging and promising approach to understanding both global and local patterns in the structure and interplay of these microbial communities. In this paper, we present an open-source python toolbox which consists of two modules: on one hand, we introduce a visualization module that incorporates the use of UMAP, a dimensionality reduction technique that focuses on local patterns, and HDBSCAN, a clustering technique based on density; on the other hand, we have included a module that runs an enhanced version of the SparCC code, sustaining larger datasets than before, and we couple the resulting networks with network theory analyses to describe the resulting co-occurrence networks, including several novel analyses, such as structural balance metrics and a proposal to discover the underlying topology of a co-occurrence network. We validated the proposed toolbox on 1) a simple and well described biological network of kombucha, consisting of 48 ASVs, and 2) we validate the improvements of our new version of SparCC. Finally, we showcase the use of the MicNet toolbox on a large dataset from Archean Domes, consisting of more than 2,000 ASVs. Our toolbox is freely available as a github repository (https://github.com/Labevo/MicNet Toolbox), and it is accompanied by a web dashboard (http://micnetapplb-1212130533.useast-1.elb.amazonaws.com) that can be used in a simple and straightforward manner with relative abundance data. This easy-to-use implementation is aimed to microbial ecologists with little to no experience in programming, while the most experienced bioinformatics will also be able to manipulate the source code's functions with ease.

Revista



Revista ISSN
P Lo S One 1932-6203

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Biology
Multidisciplinary Sciences
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Favila, Natalia Mujer Ixulabs - México
Laboratorio de Inteligencia Artificial - México
2 Madrigal-Trejo, David Hombre Univ Nacl Autonoma Mexico - México
Instituto de Ecología, UNAM - México
3 Legorreta, Daniel Hombre Ixulabs - México
Laboratorio de Inteligencia Artificial - México
4 Sanchez-Perez, Jazmin Mujer Univ Nacl Autonoma Mexico - México
Instituto de Ecología, UNAM - México
5 Espinosa-Asuar, Laura Mujer Univ Nacl Autonoma Mexico - México
Instituto de Ecología, UNAM - México
6 Eguiarte, Luis E. Hombre Univ Nacl Autonoma Mexico - México
Instituto de Ecología, UNAM - México
7 Souza, Valeria Mujer Univ Nacl Autonoma Mexico - México
Centro de Estudios del Cuaternario Fuego-Patagonia y Antártica - Chile
Instituto de Ecología, UNAM - México

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Consejo Nacional de Ciencia y Tecnología
Direccion General de Asuntos del Personal Academico, Universidad Nacional Autonoma de Mexico
UNAM-PAPIIT
Laboratorio de Inteligencia Artificial, Ixulabs
Laboratorio de Inteligencia Artificial

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
We thank Laboratorio de Inteligencia Artificial, Ixulabs, for funding acquisition, Diego Nava for his contributions in the conceptualization, and Julian Trejo and Diana Fernandez Rosales for their contribution in the elaboration of the artwork. We also thank Rosalinda Tapia and Erika Aguirre for their technical support.
This research was supported by DGAPA/ UNAM-PAPIIT Project IG200319, CEQUA project ANID R20F0009, and PhD scholarship 970341 granted to J.S.P. by Consejo Nacional de Ciencia y Tecnologia (CONACyT). We thank Laboratorio de Inteligencia Artificial, Ixulabs, for funding acquisition, Diego Nava for his contributions in the conceptualization, and Julian Trejo and Diana Fernandez Rosales for their contribution in the elaboration of the artwork. We also thank Rosalinda Tapia and Erika Aguirre for their technical support.

Muestra la fuente de financiamiento declarada en la publicación.