Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.CAM.2022.114557 | ||||
| Año | 2022 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We study the Nitsche-based finite element method for contact with Coulomb friction considering both static and dynamic situations. We provide existence and/or uniqueness results for the discretized problems under appropriate assumptions on physical and numerical parameters. In the dynamic case, existence and uniqueness of the space semi-discrete problem holds for every value of the friction coefficient and the Nitsche parameter. In the static case, if the Nitsche parameter is large enough, existence is ensured for any friction coefficient, and uniqueness can be obtained provided that the friction coefficient is below a bound that depends on the mesh size. These results are complemented by a numerical study. (C) 2022 Elsevier B.V. All rights reserved.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Chouly, F. | Hombre |
Univ Bourgogne Franche Comte - Francia
Universidad de Chile - Chile CNRS - Chile Universidad de Concepción - Chile Université Bourgogne Franche-Comté - Francia |
| 2 | Hild, Patrick | Hombre |
Universidad de Concepción - Chile
Univ Toulouse - Francia CNRS - Francia Universite Paul Sabatier Toulouse III - Francia Institut National des Sciences Appliquées de Lyon - Francia Université Toulouse III - Paul Sabatier - Francia Institut de Mathématiques de Toulouse - Francia |
| 3 | Lleras, Vanessa | Mujer |
Inst Math Toulouse - Francia
Université de Montpellier - Francia |
| 4 | Renard, Yves | Hombre |
Univ Montpellier - Francia
INSA Lyon - Francia Institut National des Sciences Appliquées de Lyon - Francia Université de Montpellier - Francia |
| Fuente |
|---|
| Centre National de la Recherche Scientifique |
| Region Bourgogne Franche-Comte |
| EIPHI Graduate School |
| EIPHI |
| Agence Maths Entreprises |
| I-Site BFC project NAANoD |
| Centre National de la Recherche Scientifique (DEFI InFIniTI 2017) |
| Agence Maths Entreprises (AMIES) (Projet Exploratoire PEPS2 MethASim) |
| Conseil régional de Bourgogne-Franche-Comté |
| Agradecimiento |
|---|
| We are thankful to the two anonymous referees for their comments that allowed to improve the manuscript. For funding, F. Chouly thanks Region Bourgogne Franche-Comte (Convention Region 2015C-4991), the Centre National de la Recherche Scientifique (Convention 232789 DEFI InFIniTI 2017), the Agence Maths Entreprises (AMIES) (Projet Exploratoire PEPS2 MethASim), the I-Site BFC project NAANoD as well as the EIPHI Graduate School (contract ANR-17-EURE-0002). |
| We are thankful to the two anonymous referees for their comments that allowed to improve the manuscript. For funding, F. Chouly thanks Région Bourgogne Franche–Comté (Convention Région 2015C-4991 ), the Centre National de la Recherche Scientifique (Convention 232789 DEFI InFIniTI 2017 ), the Agence Maths Entreprises (AMIES) (Projet Exploratoire PEPS2 MethASim), the I-Site BFC project NAANoD as well as the EIPHI Graduate School (contract ANR-17-EURE-0002 ). |