Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1007/S10092-018-0284-1 | ||||
| Año | 2018 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We propose and analyze an efficient algorithm for the computation of a basis of the space of divergence-free Raviart-Thomas finite elements. The algorithm is based on graph techniques. The key point is to realize that, with very natural degrees of freedom for fields in the space of Raviart-Thomas finite elements of degree and for elements of the space of discontinuous piecewise polynomial functions of degree , the matrix associated with the divergence operator is the incidence matrix of a particular graph. By choosing a spanning tree of this graph, it is possible to identify an invertible square submatrix of the divergence matrix and to compute easily the moments of a field in the space of Raviart-Thomas finite elements with assigned divergence. This approach extends to finite elements of high degree the method introduced by Alotto and Perugia (Calcolo 36:233-248, 1999) for finite elements of degree one. The analyzed approach is used to construct a basis of the space of divergence-free Raviart-Thomas finite elements. The numerical tests show that the performance of the algorithm depends neither on the topology of the domain nor or the polynomial degree r.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | ALONSO-RODRIGUEZ, ANA | Mujer |
Univ Trento - Italia
Università degli Studi di Trento - Italia Università di Trento - Italia |
| 2 | Camano, Jessika | Mujer |
Universidad Católica de la Santísima Concepción - Chile
Universidad de Concepción - Chile |
| 3 | DE LOS SANTOS-NUNEZ, EDUARDO ANTONIO | Hombre |
Universidad de Concepción - Chile
|
| 4 | Rapetti, F. | - |
Univ Cote Azur - Francia
Université Côte d'Azur - Francia |
| Fuente |
|---|
| CONICYT-Chile |
| Comisión Nacional de Investigación Científica y Tecnológica |
| Comisión Nacional de Investigación CientÃfica y Tecnológica |
| Fondo Nacional de Desarrollo Científico, Tecnológico y de Innovación Tecnológica |
| Fondo Nacional de Desarrollo CientÃfico, Tecnológico y de Innovación Tecnológica |
| PIA Program: Concurso Apoyo a Centros Cientificos y Tecnologicos de Excelencia con Financiamiento Basal |
| Conicyt-Chile through Fondecyt Project |
| Concurso Apoyo a Centros Científicos y Tecnológicos de Excelencia con Financiamiento Basal |
| CONICYT (Chile) fellowship |
| Agradecimiento |
|---|
| The second author was partially supported by CONICYT-Chile through Fondecyt project 1180859 and the project AFB170001 of the PIA Program: Concurso Apoyo a Centros Cientificos y Tecnologicos de Excelencia con Financiamiento Basal. The third author was partially supported by a CONICYT (Chile) fellowship. |
| Fig. 8 Total computational time (left), and time for solving the linear systems (right) in the three test cases with not connected boundary (r = 2). a Cube with a cube cavity. p = 1. b Torus with toroidal cavity. p = 1. c Cube with two cubic cavities. p = 2 Acknowledgements The second author was partially supported by CONICYT-Chile through Fondecyt project 1180859 and the project AFB170001 of the PIA Program: Concurso Apoyo a Centros Cientificos y Tecnologicos de Excelencia con Financiamiento Basal. The third author was partially supported by a CONICYT (Chile) fellowship. |