Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.3390/APP12147194 | ||||
| Año | 2022 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
This article proposes the use of reinforcement learning (RL) algorithms to control the position of a simulated Kephera IV mobile robot in a virtual environment. The simulated environment uses the OpenAI Gym library in conjunction with CoppeliaSim, a 3D simulation platform, to perform the experiments and control the position of the robot. The RL agents used correspond to the deep deterministic policy gradient (DDPG) and deep Q network (DQN), and their results are compared with two control algorithms called Villela and IPC. The results obtained from the experiments in environments with and without obstacles show that DDPG and DQN manage to learn and infer the best actions in the environment, allowing us to effectively perform the position control of different target points and obtain the best results based on different metrics and indices.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Quiroga, Francisco | Hombre |
Pontificia Universidad Católica de Valparaíso - Chile
|
| 2 | HERMOSILLA-VIGNEAU, GABRIEL | Hombre |
Pontificia Universidad Católica de Valparaíso - Chile
|
| 3 | FARIAS-CASTRO, GONZALO ALBERTO | Hombre |
Pontificia Universidad Católica de Valparaíso - Chile
|
| 4 | Fabregas, Ernesto | Hombre |
Univ Nacl Educ Distancia - España
Universidad Nacional de Educación a Distancia - España |
| 5 | Montenegro, G. | - |
Pontificia Universidad Católica de Valparaíso - Chile
|