Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.AIM.2022.108424 | ||||
| Año | 2022 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Given a polynomial of degree d over a number field, the image of the associated arboreal representation of the absolute Galois group of the field is a profinite group acting on the d-ary tree. Boston and Jones conjectured that for a quadratic polynomial, the image of such a representation contains a dense set of settled elements. Here an element is settled if it exhibits a certain pattern of growth of cycles at finite levels of the tree. In this paper, we prove the conjecture of Boston and Jones generically in the case when the quadratic polynomial has a strictly pre-periodic post-critical orbit of length 2, and provide new evidence that the conjecture holds for quadratic polynomials with strictly pre-periodic post-critical orbits of length at least 3. To prove our results, we introduce a new dynamical method, which uses the notions of a maximal torus and its Weyl group. These notions are analogous to the notions of maximal tori and Weyl groups in the theory of compact Lie groups, where they are fundamental. For profinite groups, maximal tori and Weyl groups contain the information about settled elements, and this is the foundation of our method.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Cortez, Maria Isabel | Mujer |
Facultad de Matemáticas - Chile
Pontificia Universidad Católica de Chile - Chile |
| 2 | Lukina, Olga | Mujer |
Universität Wien Institut für Mathematik - Austria
Univ Vienna - Austria |
| Fuente |
|---|
| FONDECYT |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Fondecyt Regular |
| Austrian Science Fund |
| FWF |
| Agradecimiento |
|---|
| The research of M-I. Cortez was supported by proyecto FONDECYT Regular No. 1190538 ; the research of O. Lukina is supported by the FWF Project P31950-N35 . |
| The research of M-I. Cortez was supported by proyecto FONDECYT Regular No. 1190538; the research of O. Lukina is supported by the FWF Project P31950-N35. |
| The research of M-I. Cortez was supported by proyecto FONDECYT Regular No. 1190538; the research of O. Lukina is supported by the FWF Project P31950-N35. |
| * The research of M-I. Cortez was supported by proyecto FONDECYT Regular No. 1190538; the research of O. Lukina is supported by the FWF Project P31950-N35. |