Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.CEJ.2022.136019 | ||||
| Año | 2022 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
The increasing demand for portable electronic devices and batteries has led to a growing interest in Li compounds. Lithium manganese oxides (LMO) are the most popular lithium-ion sieves (LIS) precursor materials due to their high lithium adsorption capacity and selectivity. The key step in forming LIS is the lithium desorption process from the crystalline lattice of the LMO. However, this process has been less researched than its counterpart, the lithium adsorption process. In this line, there are some studies describing the process of lithium desorption in acid media from spinel-type LMO. Nevertheless, there is no evidence of the lithium desorption process of layered-type lithium-rich LMO in acidic media. In the present work, we investigated the lithium desorption behavior of different LMO nanocomposites in HCl. LMOs with different Li/Mn ratios were synthesized by promoting the lithium-rich layered phase (Li2MnO3). The morphology, size, crystallinity, chemical composition, and surface properties of LMO nanocomposites and delithiated products were studied. In addition, density functional theory (DFT) calculations were carried out to understand the differential lithium desorption behavior, confirming its dependence on the Li/Mn ratio of the LMO nanocomposites. Herein, we demonstrate that the lithium diffusion energy barrier plays a major role during lithium desorption from LMO nanocomposites. Our results suggest that an exhaustive characterization of lithium precursor materials (LMO) is necessary to select a suitable desorption process.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Pulido, Ruth | Mujer |
Instituto Universitario de Ciencia de Materiales Nicolás Cabrera - España
Universidad de Antofagasta - Chile UNIV AUTONOMA MADRID - España |
| 2 | NAVEAS-RIOS, NELSON | Hombre |
Instituto Universitario de Ciencia de Materiales Nicolás Cabrera - España
Universidad de Antofagasta - Chile UNIV AUTONOMA MADRID - España |
| 3 | J.Martín-Palma, Raúl | Hombre |
Instituto Universitario de Ciencia de Materiales Nicolás Cabrera - España
|
| 3 | Martin-Palma Raul, J. | - |
UNIV AUTONOMA MADRID - España
|
| 4 | GRABER-SEGUEL, TEOFILO ARNOLDO | Hombre |
Universidad de Antofagasta - Chile
|
| 4 | Graber, Teoftlo | - |
Universidad de Antofagasta - Chile
|
| 5 | BRITO-BOBADILLA, IVAN LEANDRO | Hombre |
Universidad de Antofagasta - Chile
|
| 6 | HERNANDEZ-MONTELONGO, JESUS JACOBO | Hombre |
Universidad Católica de Temuco - Chile
|
| 7 | Manso-Silván, Miguel | Hombre |
Instituto Universitario de Ciencia de Materiales Nicolás Cabrera - España
Centro de Microanálisis de Materiales - España UNIV AUTONOMA MADRID - España |
| Fuente |
|---|
| CONICYT |
| Comisión Nacional de Investigación Científica y Tecnológica |
| Universidad de Antofagasta |
| government of Spain |
| Universidad Aut?noma de Madrid |
| CCC-UAM |
| Agradecimiento |
|---|
| We recognize to PhD. Programs in ?Advanced Materials and Nanotechnologies? from Universidad Aut?noma de Madrid (UAM, Spain) and ?Ingenier?a de Procesos de Minerales? from Universidad de Antofagasta (UA, Chile). This work was financially supported by CONICYT PFCHA/DOCTORADO/2015-21151648 (Ruth Pulido), PFCHA/DOCTORADO/2017-21172001 (Nelson Naveas) and partially funded by project USAMPSA, PID-2020-112770-C22, from the Government of Spain. The simulations used in this paper have been performed in the Centro de Computaci?n Cient?fica-Universidad Aut?noma de Madrid (CCC-UAM); thanks to CPU time and other resources granted by the institution. |
| We recognize to PhD. Programs in ?Advanced Materials and Nanotechnologies? from Universidad Aut?noma de Madrid (UAM, Spain) and ?Ingenier?a de Procesos de Minerales? from Universidad de Antofagasta (UA, Chile). This work was financially supported by CONICYT PFCHA/DOCTORADO/2015-21151648 (Ruth Pulido), PFCHA/DOCTORADO/2017-21172001 (Nelson Naveas) and partially funded by project USAMPSA, PID-2020-112770-C22, from the Government of Spain. The simulations used in this paper have been performed in the Centro de Computaci?n Cient?fica-Universidad Aut?noma de Madrid (CCC-UAM); thanks to CPU time and other resources granted by the institution. |
| We recognize to PhD. Programs in "Advanced Materials and Nanotechnologies" from Universidad Autonoma de Madrid (UAM, Spain) and "Ingenieria de Procesos de Minerales" from Universidad de Antofagasta (UA, Chile). This work was financially supported by CONICYT PFCHA/DOCTORADO/2015-21151648 (Ruth Pulido), PFCHA/DOCTORADO/2017-21172001 (Nelson Naveas) and partially funded by project USAMPSA, PID-2020-112770-C22, from the Government of Spain. The simulations used in this paper have been performed in the Centro de Computacion Cientifica-Universidad Autonoma de Madrid (CCC-UAM); thanks to CPU time and other resources granted by the institution. |