Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Machine Learning Models to Predict Critical Episodes of Environmental Pollution for PM2.5 and PM10 in Talca, Chile
Indexado
WoS WOS:000804190500001
Scopus SCOPUS_ID:85123523798
DOI 10.3390/MATH10030373
Año 2022
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



One of the main environmental problems that affects people’s health and quality of life is air pollution by particulate matter. Chile has nine of the ten most polluted cities in South America according to a report presented in 2019 by Greenpeace and AirVisual that measured the air quality index based on the levels of fine particles. Most Chilean cities are highly contaminated by particulate matter, especially during the months of April to August (the critical episode management period). The objective of this study is to predict particulate matter levels based on meteorological and climatic features, such as temperature, wind speed, wind direction, precipitation and relative air humidity in Talca, Chile, during the critical episode management periods between 2014 and 2018. Predictive models based on machine learning techniques were used, considering training datasets with meteorological and climatic data, and particulate matter levels from the three air quality monitoring stations in Talca, Chile. We carried out the training of 24 models to predict particulate matter levels considering the 24-h average and average between 05:00 to 11:00 p.m. For the model testing, data from the year 2018 during the critical episode management period were used. The obtained results indicate that our models are able to effectively predict levels of particulate matter, enabling correct management of critical episodes, especially for alert, pre-emergency and emergency conditions. We used the cross-platform and open-source programming language Python for the development and implementation of the proposed models and R-project for some visualizations.

Revista



Revista ISSN
Mathematics 2227-7390

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Mathematics
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Carreño, Gonzálo - Universidad Católica del Maule - Chile
2 LOPEZ-CORTES, XAVIERA ALEJANDRA Mujer Universidad Católica del Maule - Chile
3 MARCHANT-FUENTES, CAROLINA IVONNE Mujer Universidad Católica del Maule - Chile
Núcleo Milenio Centro para el Descubrimiento de Estructuras en Datos Complejos - Chile
Millennium Nucleus Ctr Discovery Struct Complex D - Chile
Millennium Nucleus Center for the Discovery of Structures in Complex Data - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Origen de Citas Identificadas



Muestra la distribución de países cuyos autores citan a la publicación consultada.

Citas identificadas: Las citas provienen de documentos incluidos en la base de datos de DATACIENCIA

Citas Identificadas: 10.0 %
Citas No-identificadas: 90.0 %

Muestra la distribución de instituciones nacionales o extranjeras cuyos autores citan a la publicación consultada.

Citas identificadas: Las citas provienen de documentos incluidos en la base de datos de DATACIENCIA

Citas Identificadas: 10.0 %
Citas No-identificadas: 90.0 %

Financiamiento



Fuente
Fondo Nacional de Desarrollo Científico y Tecnológico
ANID
Agencia Nacional de Investigación y Desarrollo
National Agency for Research and Development
National Agency for Research and Development (ANID) of the Chilean government
ANID-Millennium Science Initiative Program
ANID-Millennium Science Initiative Program—NCN17_059
ANID-Millennium
Agenția Națională pentru Cercetare și Dezvoltare

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This research was supported partially by project grants “Fondecyt 11190636” (C. Marchant) from the National Agency for Research and Development (ANID) of the Chilean government and by ANID-Millennium Science Initiative Program—NCN17_059 (C. Marchant).
This research was supported partially by project grants "Fondecyt 11190636" (C. Marchant) from the National Agency for Research and Development (ANID) of the Chilean government and by ANID-Millennium Science Initiative Program-NCN17_059 (C. Marchant).

Muestra la fuente de financiamiento declarada en la publicación.