Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



A systematic comparative evaluation of machine learning classifiers and discrete choice models for travel mode choice in the presence of response heterogeneity
Indexado
WoS WOS:000800274500001
Scopus SCOPUS_ID:85122575556
DOI 10.1016/J.ESWA.2021.116253
Año 2022
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Discrete choice models has been for decades the most used technique to model travel mode choice, being the multinomial logit (MNL) the most popular model among them. Several versions of the MNL model have been proposed, such as the mixed multinomial logit (MMNL) model which takes into account unobserved taste heterogeneity. On the other hand, machine learning (ML) methods have begun to gain ground in the transportation field, showing a high predictive power that surpasses logit models. Nowadays, most studies comparing machine learning methods and logit models mainly focus on predictive accuracy, while others – to a lesser extent – focus on post-hoc explanation analysis. In this paper, we compare the predictive performance of five machine learning classifiers and the MNL and MMNL models. Also, we shed light on explanation capability by computing the effect of different variables not only on the overall prediction but also on the prediction of different choice alternatives using an agnostic-model method. The different methods are tested based on synthetic datasets with and without taste heterogeneity between decision-maker, showing a reduction of the accuracy gap between discrete choice models and ML methods when taste heterogeneity is present. We also present an empirical application using four mode choice datasets. Our results show that Neural Networks generally perform better than other models in terms of accuracy and interpretation. Results highlight the importance of analyzing the equivalence between the models in order to complement the explanations obtained through the two approaches. Our analysis can be used to support management decision making and to better understand the factors that determine people's travel behavior.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Computer Science, Artificial Intelligence
Engineering, Electrical & Electronic
Operations Research & Management Science
Scopus
Computer Science Applications
Artificial Intelligence
Engineering (All)
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Salas, Patricio Hombre Universidad de Concepción - Chile
2 DE LA FUENTE-AVILA, RODRIGO ALEJANDRO Hombre Universidad de Concepción - Chile
3 ASTROZA-TAGLE, SEBASTIAN Hombre Universidad de Concepción - Chile
Instituto Sistemas Complejos de Ingeniería - Chile
4 CARRASCO-MONTAGNA, JUAN ANTONIO Hombre Universidad de Concepción - Chile
Instituto Sistemas Complejos de Ingeniería - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
ANID
ANID PIA/BASAL
ANID-PFCHA/Doctorado Nacional

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
We thank three anonymous reviewers at the Transportation Research Board 2020 Annual Meeting, Angelo Guevara, and Charles Thraves for helpful comments which helped improve this paper. We also thank Antonio Paez for kindly providing the McMaster University dataset. This work was funded by ANID PIA/BASAL AFB180003 and ANID-PFCHA/Doctorado Nacional 2020-21201091 .
We thank three anonymous reviewers at the Transportation Research Board 2020 Annual Meeting, Angelo Guevara, and Charles Thraves for helpful comments which helped improve this paper. We also thank Antonio Paez for kindly providing the McMaster University dataset. This work was funded by ANID PIA/BASAL AFB180003 and ANID-PFCHA/Doctorado Nacional 2020-21201091.

Muestra la fuente de financiamiento declarada en la publicación.