Muestra la distribución de disciplinas para esta publicación.
Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.
| Indexado |
|
||
| DOI | |||
| Año | 2020 | ||
| Tipo | proceedings paper |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
This paper proposes and analyzes a new approach for reducing the bias in gender caused by skin tone from faces based on transfer learning with fine-tuning. The categorization of the ethnicity was developed based on an objective method instead of a subjective Fitzpatrick scale. A K-means method was used to categorize the color faces using clusters of RGB pixel values. Also, a new database was collected from the internet and will be available upon request. Our method outperforms the state of the art and reduces the gender classification bias using the skin-type categorization. The best results were achieved with VGGNET architecture with 96.71% accuracy and 3.29% error rate.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Molina, David A. | Hombre |
Universidad Nacional Andrés Bello - Chile
|
| 2 | CAUSA-MORALES, LEONARDO | Hombre |
TOC Biometr - Chile
|
| 3 | TAPIA-FARIAS, JUAN EDUARDO | Hombre |
Universidad de Santiago de Chile - Chile
|
| 4 | Bromme, A | - | |
| 5 | Busch, C | - | |
| 6 | Dantcheva, A | - | |
| 7 | Raja, K | - | |
| 8 | Rathgeb, C | - | |
| 9 | Uhl, A | - |