Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Stress Test Evaluation of Transformer-based Models in Natural Language Understanding Tasks
Indexado
WoS WOS:000724697201116
DOI
Año 2020
Tipo proceedings paper

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



There has been significant progress in recent years in the field of Natural Language Processing thanks to the introduction of the Transformer architecture. Current state-of-the-art models, via a large number of parameters and pre-training on massive text corpus, have shown impressive results on several downstream tasks. Many researchers have studied previous (non-Transformer) models to understand their actual behavior under different scenarios, showing that these models are taking advantage of clues or failures of datasets and that slight perturbations on the input data can severely reduce their performance. In contrast, recent models have not been systematically tested with adversarial-examples in order to show their robustness under severe stress conditions. For that reason, this work evaluates three Transformer-based models (RoBERTa, XLNet, and BERT) in Natural Language Inference (NLI) and Question Answering (QA) tasks to know if they are more robust or if they have the same flaws as their predecessors. As a result, our experiments reveal that RoBERTa, XLNet and BERT are more robust than recurrent neural network models to stress tests for both NLI and QA tasks. Nevertheless, they are still very fragile and demonstrate various unexpected behaviors, thus revealing that there is still room for future improvement in this field.

Revista



Revista ISSN
979-10-95546-34-4

Disciplinas de Investigación



WOS
Sin Disciplinas
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Aspillaga, Carlos Hombre Pontificia Universidad Católica de Chile - Chile
2 Carvallo, Andres Hombre Pontificia Universidad Católica de Chile - Chile
Instituto Milenio Fundamentos de los Datos - Chile
3 Araujo, Vladimir Hombre Pontificia Universidad Católica de Chile - Chile
Instituto Milenio Fundamentos de los Datos - Chile
4 Calzolari, N -
5 Bechet, F -
6 Blache, P -
7 Choukri, K -
8 Cieri, C -
9 Declerck, T -
10 Goggi, S -
11 Isahara, H -
12 Maegaard, B -
13 Mariani, J -
14 Mazo, H -
15 Moreno, A -
16 Odijk, J -
17 Piperidis, S -

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Millennium Institute for Foundational Research on Data (IMFD)

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
We would like to thank Alvaro Soto and Denis Parra for helpful comments. We are also grateful to the anonymous reviewers for their valuable feedback on an earlier version of this paper. This work has been partially funded by Millennium Institute for Foundational Research on Data (IMFD).

Muestra la fuente de financiamiento declarada en la publicación.