Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1007/S10915-022-01780-4 | ||||
| Año | 2022 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
The aim of this paper is to study the numerical approximation of an axisymmetric time-harmonic eddy current problem involving an in-plane current. The analysis of the problem restricts to the conductor. The source of the problem is given in terms of boundary data currents and/or voltage drops defined in the so-called electric ports, which are parts of the boundary connected to exterior sources. This leads to an elliptic problem written in terms of the magnetic field with nonlocal boundary conditions. First, we prove the existence and uniqueness of the solution for a weak formulation written in terms of Sobolev spaces with appropriate weights. We show that the magnetic field is not the most appropriate variable to impose the boundary conditions when Lagrangian finite elements are used to discretize the problem. We propose an alternative weak formulation of the problem which allows us to avoid this drawback. We compute the numerical solution of the problem by using Lagrangian finite elements ad hoc modified on the vicinity of the symmetry axis. We provide a convergence result under rather general conditions. Moreover, we prove quasi-optimal order error estimates under additional regularity assumptions. Finally, we report numerical results which allow us to confirm the theoretical estimates and to assess the performance of the proposed method in a physical application which is the motivation of this paper: the computation of the current density distribution in a steel cylindrical bar submitted to electric-upsetting.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Bermudez, Alfredo | Hombre |
Univ Santiago de Compostela - España
Universidad de Santiago de Compostela - España |
| 2 | Lopez-Rodriguez, Bibiana | Mujer |
UNIV NACL COLOMBIA - Colombia
Universidad Nacional de Colombia Medellin - Colombia |
| 3 | Pena, F. J. | - |
Univ Santiago de Compostela - España
Universidad de Santiago de Compostela - España |
| 4 | RODRÍGUEZ-ALONSO, RAFAEL IGNACIO | Hombre |
Universidad de Concepción - Chile
|
| 5 | Salgado, P. | Mujer |
Univ Santiago de Compostela - España
Universidad de Santiago de Compostela - España |
| 6 | VENEGAS-TAPIA, PABLO ANTONIO | Hombre |
Universidad del Bío Bío - Chile
|
| Fuente |
|---|
| CONICYT-Chile |
| FONDECYT-Chile |
| European Regional Development Fund |
| Universidad Nacional de Colombia |
| Xunta de Galicia |
| Xunta de Galicia (Spain) |
| Universidad Nacional de Colombia through Hermes project |
| Centro de Modelamiento Matem?tico |
| Centro de Modelamiento Matematico (CMM), BASAL funds for centers of excellence from ANID-Chile |
| Ministerio de Asuntos Económicos y Transformación Digital, Gobierno de España |
| FEDER, Ministerio de Economia, Industria y Competitividad-AEI research project |
| Agradecimiento |
|---|
| The work of the authors from Universidade de Santiago de Compostela was supported by FEDER, Ministerio de Economia, Industria y Competitividad-AEI research project MTM2017-86459-R, by Xunta de Galicia (Spain) research project GI-1563 ED431C 2021/15. R. Rodriguez was partially supported by CONICYT-Chile through project AFB170001. P. Venegas was partially supported by FONDECYT-Chile project 1211030 and by Centro de Modelamiento Matematico (CMM), FB210005, BASAL funds for centers of excellence from ANID-Chile. B. Lopez-Rodriguez was partially supported by Universidad Nacional de Colombia through Hermes project 52759. |
| The work of the authors from Universidade de Santiago de Compostela was supported by FEDER, Ministerio de Econom?a, Industria y Competitividad-AEI research project MTM2017-86459-R, by Xunta de Galicia (Spain) research project GI-1563 ED431C 2021/15. R.?Rodr?guez was partially supported by CONICYT-Chile through project AFB170001. P.?Venegas was partially supported by FONDECYT-Chile project 1211030 and by Centro de Modelamiento Matem?tico (CMM), FB210005, BASAL funds for centers of excellence from ANID-Chile. B.?L?pez-Rodr?guez was partially supported by Universidad Nacional de Colombia through Hermes project 52759. |
| The work of the authors from Universidade de Santiago de Compostela was supported by FEDER, Ministerio de Econom?a, Industria y Competitividad-AEI research project MTM2017-86459-R, by Xunta de Galicia (Spain) research project GI-1563 ED431C 2021/15. R.?Rodr?guez was partially supported by CONICYT-Chile through project AFB170001. P.?Venegas was partially supported by FONDECYT-Chile project 1211030 and by Centro de Modelamiento Matem?tico (CMM), FB210005, BASAL funds for centers of excellence from ANID-Chile. B.?L?pez-Rodr?guez was partially supported by Universidad Nacional de Colombia through Hermes project 52759. |