Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Globalization of supercuspidal representations over function fields and applications
Indexado
WoS WOS:000445904300007
Scopus SCOPUS_ID:85054850078
DOI 10.4171/JEMS/825
Año 2018
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Let H be a connected reductive group defined over a non-archimedean local field F of characteristic p > 0. Using Poincare series, we globalize supercuspidal representations of H-F in such a way that we have control over ramification at all other places, and such that the notion of distinction with respect to a unipotent subgroup (indeed more general subgroups) is preserved. In combination with the work of Vincent Lafforgue on the global Langlands correspondence, we present some applications, such as the stability of Langlands-Shahidi gamma-factors and the local Langlands correspondence for classical groups.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Mathematics
Mathematics, Applied
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Gan, Wee Teck - Natl Univ Singapore - Singapur
National University of Singapore - Singapur
2 Lomelí, Luis Hombre Pontificia Universidad Católica de Valparaíso - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
National Science Foundation
Ministry of Education - Singapore
Singapore government MOE
Directorate for Mathematical and Physical Sciences

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
The first author is partially supported by a Singapore government MOE Tier 2 grant R-146-000-175-112. This paper is based upon work supported by the National Science Foundation under Grant No. 0932078 000 while the authors were in residence at the Mathematical Sciences Research Institute in Berkeley, California, during the Fall 2014 semester. We thank MSRI for providing excellent working conditions. The second author would like to thank the Max Planck Institute for Mathematics for its hospitality during the year 2015.
The first author is partially supported by a Singapore government MOE Tier 2 grant R-146-000-175-112. This paper is based upon work supported by the National Science Foundation under Grant No. 0932078 000 while the authors were in residence at the Mathematical Sciences Research Institute in Berkeley, California, during the Fall 2014 semester. We thank MSRI for providing excellent working conditions. The second author would like to thank the Max Planck Institute for Mathematics for its hospitality during the year 2015.

Muestra la fuente de financiamiento declarada en la publicación.