Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Evaluation of end-to-end CNN models for palm vein recognition
Indexado
WoS WOS:000765927700011
DOI 10.1109/SCCC54552.2021.9650384
Año 2021
Tipo proceedings paper

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



In recent years, biometric systems have positioned themselves among the most widely used technologies for people recognition. In this context, palm vein patterns have received the attention of researchers due to their uniqueness, non-intrusion, and reliability. Currently, research on palm vein recognition based on deep learning is still very preliminary, most of the works are based on very deep models by using pre-trained models and transfer learning techniques. In this work, we evaluate end-to-end CNN models for palm vein recognition. The proposed method was implemented on seven public databases of palm vein images and two convolutional neural network architectures were evaluated: SingleNet, the proposed architecture of few convolutional layers, and a deeper architecture based on ResNet32. The experimental results demonstrate the superiority of the SingleNet model, outperforming the state-of-the-art results for the IITI, PUT, and FYO databases, achieving the same results on the Tongji and PolyU datasets, and obtaining a slightly lower performance for the VERA and CASIA databases. Comparing to the state-of-the-art approaches, our proposed method is computationally simpler than those that are based on very deep architectures and others that fuse hand-crafted and CNN extracted features.

Revista



Revista ISSN
978-1-6654-0956-8

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Sin Disciplinas
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Santamaria, Jose Hombre Universidad Católica del Maule - Chile
2 Hernandez-Garcia, Ruber - Universidad Católica del Maule - Chile
3 Barrientos, Ricardo J. Hombre Universidad Católica del Maule - Chile
4 Manuel Castro, Francisco Hombre Univ Malaga - España
5 Ramos-Cozar, Julian Hombre Univ Malaga - España
6 Guil, Nicolas Hombre Univ Malaga - España
7 IEEE Corporación

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.