Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Bayesian updating and identifiability assessment of nonlinear finite element models
Indexado
WoS WOS:000719738700002
Scopus SCOPUS_ID:85118845613
DOI 10.1016/J.YMSSP.2021.108517
Año 2022
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



A promising and attractive way of performing structural health monitoring (SHM) and damage prognosis (DP) of engineering systems is through utilizing a nonlinear finite element (FE) model. Often, FE models contain parameters that are unknown or known with significant level of uncertainty. Such parameters need to be estimated/updated/calibrated using data measured from the physical system. The Bayesian paradigm to model updating/calibration is attractive as it accounts, using a rigorous probabilistic framework, for numerous sources of uncertainties existing in the real-world. However, applying Bayesian methods to nonlinear FE models of large-scale civil structural systems is computationally very prohibitive. Additionally, non-identifiability of FE model parameters poses challenges in the model updating process. This paper presents Bayesian model updating and identifiability analysis of nonlinear FE models with a specific testbed civil structure, Pine Flat concrete gravity dam, as illustration example. Model updating is performed in the recursive mode using the unscented Kalman filter (UKF) and in the batch mode using the transitional Markov chain Monte Carlo (TMCMC) method. Limitations in terms of applicability and computational challenges of each method for model updating of large-scale nonlinear FE models are addressed and discussed. Identifiability and sensitivity analyses of the model are then performed using local and global methods. Local practical identifiability analysis using local sensitivity in conjunction with the Fisher information matrix is used to assess the parameter identifiability in a certain local region in the parameter space. Due to the nonexistence of a method to assess global practical identifiability, variance-based global sensitivity analysis (Sobol's method) is used herein. Identifiability and sensitivity analysis results are used to choose the parameters to be included in the model updating phase.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Engineering, Mechanical
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Ramancha, Mukesh Kumar Hombre Univ Calif San Diego - Estados Unidos
Structural Engineering Department - Estados Unidos
Department of Structural Engineering - Estados Unidos
2 ASTROZA-EULUFI, RODRIGO Hombre Universidad de Los Andes, Chile - Chile
3 Madarshahian, Ramin Hombre Kount Equifax Co - Estados Unidos
Kount an Equifax Company - Estados Unidos
4 Conte, Joel P. Hombre Univ Calif San Diego - Estados Unidos
Structural Engineering Department - Estados Unidos
Department of Structural Engineering - Estados Unidos

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
U.S. Army Corps of Engineers
Engineer Research and Development Center
U.S. Army Corps of Engineers through the U.S. Army Engineer Research and Development Center Research Cooperative Agreement

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
Funding for this work by the U.S. Army Corps of Engineers through the U.S. Army Engineer Research and Development Center Research Cooperative Agreement W912HZ-17-2-0024 is gratefully acknowledged.
Funding for this work by the U.S. Army Corps of Engineers through the U.S. Army Engineer Research and Development Center Research Cooperative Agreement W912HZ-17-2-0024 is gratefully acknowledged.

Muestra la fuente de financiamiento declarada en la publicación.