Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Machine-Learning-Based Microwave Sensing: A Case Study for the Food Industry
Indexado
WoS WOS:000696075000012
Scopus SCOPUS_ID:85110839809
DOI 10.1109/JETCAS.2021.3097699
Año 2021
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Despite the meticulous attention of food industries to prevent hazards in packaged goods, some contaminants may still elude the controls. Indeed, standard methods, like X-rays, metal detectors and near-infrared imaging, cannot detect low-density materials. Microwave sensing is an alternative method that, combined with machine learning classifiers, can tackle these deficiencies. In this paper we present a design methodology applied to a case study in the food sector. Specifically, we offer a complete flow from microwave dataset acquisition to deployment of the classifiers on real-time hardware and we show the effectiveness of this method in terms of detection accuracy. In the case study, we apply the machine-learning based microwave sensing approach to the case of food jars flowing at high speed on a conveyor belt. First, we collected a dataset from hazelnut-cocoa spread jars which were uncontaminated or contaminated with various intrusions, including low-density plastics. Then, we performed a design space exploration to choose the best MLPs as binary classifiers, which resulted to be exceptionally accurate. Finally, we selected the two most light-weight models for implementation on both an ARM-based CPU and an FPGA SoC, to cover a wide range of possible latency requirements, from loose to strict, to detect contaminants in real-time. The proposed design flow facilitates the design of the FPGA accelerator that might be required to meet the timing requirements by using a high-level approach, which might be suited for the microwave domain experts without specific digital hardware skills.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Engineering, Electrical & Electronic
Scopus
Electrical And Electronic Engineering
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Ricci, Marco Hombre Politecn Torino - Italia
Politecnico di Torino - Italia
2 Stitic, Bernardita Mujer Pontificia Universidad Católica de Chile - Chile
3 Urbinati, Luca Hombre Politecn Torino - Italia
Politecnico di Torino - Italia
4 Di Guglielmo, Giuseppe Hombre Columbia Univ - Estados Unidos
Columbia University - Estados Unidos
The Fu Foundation School of Engineering and Applied Science - Estados Unidos
5 Vasquez, Jorge A. Tobon Hombre Politecn Torino - Italia
Politecnico di Torino - Italia
6 Carloni, Luca P. Hombre Columbia Univ - Estados Unidos
Columbia University - Estados Unidos
The Fu Foundation School of Engineering and Applied Science - Estados Unidos
7 Vipiana, Francesca Mujer Politecn Torino - Italia
Politecnico di Torino - Italia
8 Casu, Mario R. Hombre Politecn Torino - Italia
Politecnico di Torino - Italia

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
National Science Foundation
Ministero dell’Istruzione, dell’Università e della Ricerca
Italian Ministry of University and Research through the PRIN ("Progetti di ricerca di Rilevante Interesse Nazionale") Project "BEST-Food, Broadband Electromagnetic Sensing Technologies for Food Quality and Security Assessment"
Broadband Electromagnetic Sensing Technologies for Food Quality and Security Assessment
BEST-Food

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This work was supported in part by the Italian Ministry of University and Research through the PRIN ("Progetti di ricerca di Rilevante Interesse Nazionale") Project "BEST-Food, Broadband Electromagnetic Sensing Technologies for Food Quality and Security Assessment" and in part by the National Science Foundation under Grant 1527821 and Grant 1764000.
Manuscript received March 10, 2021; revised May 25, 2021; accepted July 8, 2021. Date of publication July 16, 2021; date of current version September 13, 2021. This work was supported in part by the Italian Ministry of University and Research through the PRIN (“Progetti di ricerca di Rile-vante Interesse Nazionale”) Project “BEST-Food, Broadband Electromagnetic Sensing Technologies for Food Quality and Security Assessment” and in part by the National Science Foundation under Grant 1527821 and Grant 1764000. This article was recommended by Guest Editor D. Demarchi. (Corresponding author: Mario R. Casu.) Marco Ricci, Luca Urbinati, Jorge A. Tobón Vasquez, Francesca Vipiana, and Mario R. Casu are with the Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Torino, Italy (e-mail: mario.casu@polito.it).

Muestra la fuente de financiamiento declarada en la publicación.