Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.3934/MINE.2022022 | ||||
| Año | 2022 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
We study the decay/growth rates in all L-p norms of solutions to an inhomogeneous nonlocal heat equation in R-N involving a Caputo alpha-time derivative and a power beta of the Laplacian when the dimension is large, N > 4 beta. Rates depend strongly on the space-time scale and on the time behavior of the spatial L-1 norm of the forcing term.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Cortazar, Carmen | Mujer |
Pontificia Universidad Católica de Chile - Chile
|
| 2 | Quiros, F. | Hombre |
UNIV AUTONOMA MADRID - España
CSIC - España Universidad Autónoma de Madrid - España CSIC-UAM-UC3M-UCM - Instituto de Ciencias Matematicas (ICMAT) - España Universidad Carlos III de Madrid - España |
| 3 | Wolanski, Noemi | Mujer |
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Argentina
Universidad de Buenos Aires - Argentina |
| Fuente |
|---|
| Agencia Nacional de Promoción Científica y Tecnológica |
| Consejo Nacional de Investigaciones Científicas y Técnicas |
| CONICET |
| ANPCyT |
| UBACyT |
| Ministerio de Economía y Competitividad |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| FONDECYT (Chile) |
| Ministerio de Ciencia e Innovación (Spain) |
| Ministerio de Ciencia e Innovación |
| European Union's Horizon 2020 Research and Innovation programme under the Marie Sklodowska-Curie grant |
| H2020 Marie Skłodowska-Curie Actions |
| Horizon 2020 Framework Programme |
| Secretaría de Ciencia y Técnica, Universidad de Buenos Aires |
| MathAmSud (Argentina) |
| Ministerio de Ciencia e Innovaci?n |
| MathAmSud 13MATH03 |
| Ministerio de Econom'ia y Competitividad (Spain) |
| Agradecimiento |
|---|
| This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 777822. Carmen Cort ' azar supported by FONDECYT grant 1190102 (Chile). Fernando Quir ' os supported by Ministerio de Econom ' ia y Competitividad (Spain), through project MTM2017-87596-P, and by Ministerio de Ciencia e Innovaci ' on (Spain), through project ICMAT-Centro de excelencia "Severo Ochoa", CEX2019-000904-S. Noem ' i Wolanski supported by CONICET PIP 11220150100032CO 2016-2019, ANPCyT PICT2016-1022, UBACYT 20020150100154BA and MathAmSud 13MATH03 (Argentina). |
| This project has received funding from the European Union?s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 777822. Carmen Cort?zar supported by FONDECYT grant 1190102 (Chile). Fernando Quir?s supported by Ministerio de Econom?a y Competitividad (Spain), through project MTM2017-87596-P, and by Ministerio de Ciencia e Innovaci?n (Spain), through project ICMAT-Centro de excelencia ?Severo Ochoa?, CEX2019-000904-S. Noem? Wolanski supported by CONICET PIP 11220150100032CO 2016-2019, ANPCyT PICT2016-1022, UBACYT 20020150100154BA and MathAmSud 13MATH03 (Argentina). |
| This project has received funding from the European Union?s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 777822. Carmen Cort?zar supported by FONDECYT grant 1190102 (Chile). Fernando Quir?s supported by Ministerio de Econom?a y Competitividad (Spain), through project MTM2017-87596-P, and by Ministerio de Ciencia e Innovaci?n (Spain), through project ICMAT-Centro de excelencia ?Severo Ochoa?, CEX2019-000904-S. Noem? Wolanski supported by CONICET PIP 11220150100032CO 2016-2019, ANPCyT PICT2016-1022, UBACYT 20020150100154BA and MathAmSud 13MATH03 (Argentina). |