Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Asymmetric free spaces and canonical asymmetrizations
Indexado
WoS WOS:000697482100001
Scopus SCOPUS_ID:85115984459
DOI 10.4064/SM200527-24-11
Año 2021
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



A construction analogous to that of Godefroy-Kalton for metric spaces allows one to embed isometrically, in a canonical way, every quasi-metric space (X, d) in an asymmetric normed space F-a (X, d) (its quasi-metric free space, also called asymmetric free space or semi-Lipschitz free space). The quasi-metric free space satisfies a universal property (linearization of semi-Lipschitz functions). The (conic) dual of F-a (X, d) coincides with the non-linear asymmetric dual of (X, d), that is, the space SLip(0)(X, d) of semiLipschitz functions on (X, d), vanishing at a base point. In particular, for the case of a metric space (X, D), the above construction yields its usual free space. On the other hand, every metric space (X, D) naturally inherits a canonical asymmetrization coming from its free space F(X). This gives rise to a quasi-metric space (X, D+) and an asymmetric free space F-a (X, D+) . The symmetrization of the latter is isomorphic to the original free space F(X). The results of this work are illustrated with explicit examples.

Revista



Revista ISSN
Studia Mathematica 0039-3223

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Mathematics
Scopus
Mathematics (All)
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Daniilidis, Aris Hombre Universidad de Chile - Chile
2 Sepulcre, Juan Matias Hombre Univ Alicante - España
Universitat d'Alacant - España
3 Venegas, Francisco M. Hombre Universidad de Chile - Chile
3 Francisco Venegas, M. - Universidad de Chile - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
FONDECYT
CONICYT (Chile)
Fondo Nacional de Desarrollo Científico y Tecnológico
European Regional Development Fund
ECOS-CONICYT
Ministerio de Ciencia, Innovacion y Universidades
Agencia Estatal de Investigación
CMM
ECOS-Conicyt (Chile)
MCIU/AEI/ERDF, UE

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
Part of this work was realized during a research stay of A. Daniilidis (Gaspard Monge invited professor) and F. Venegas (Research trainee) at IN-RIA (Equipe Tropicale) and CMAP of Ecole Polytechnique (France) , from September to December 2018. The authors wish to thank G. Godefroy and S. Gaubert for insightful comments. Part of this work has been presented by the third author at the conference "Function Theory on Infinite Dimen-sional Spaces XVI", held at the Complutense University of Madrid (Novem-ber 2019) . This author is grateful to the organizing committee of the event for hospitality and financial support. He also thanks S. Tapia, A. Prochazka and C. Petitjean for useful discussions.r Research of A. Daniilidis supported by the grants: CMM AFB170001, FONDECYT 1211217, ECOS-CONICYT C18E04 (Chile) , and PGC2018-097960-B-C22 (MCIU/AEI/ERDF, UE) .r Research of J. M. Sepulcre supported by the grant PGC2018-097960-B-C22 (MCIU/AEI/ERDF, UE).r Research of F. Venegas supported by the grants: CMM AFB170001, FONDECYT 1171854, ECOS-CONICYT C18E04, and CONICYT Doctor-ate Fellowship PFCHA 2019-21191167 (Chile) .
Part of this work was realized during a research stay of A. Daniilidis (Gaspard Monge invited professor) and F. Venegas (Research trainee) at IN-RIA (Équipe Tropicale) and CMAP of École Polytechnique (France), from September to December 2018. The authors wish to thank G. Godefroy and S. Gaubert for insightful comments. Part of this work has been presented by the third author at the conference “Function Theory on Infinite Dimensional Spaces XVI”, held at the Complutense University of Madrid (November 2019). This author is grateful to the organizing committee of the event for hospitality and financial support. He also thanks S. Tapia, A. Procházka and C. Petitjean for useful discussions.

Muestra la fuente de financiamiento declarada en la publicación.