Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.4064/SM200527-24-11 | ||||
| Año | 2021 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
A construction analogous to that of Godefroy-Kalton for metric spaces allows one to embed isometrically, in a canonical way, every quasi-metric space (X, d) in an asymmetric normed space F-a (X, d) (its quasi-metric free space, also called asymmetric free space or semi-Lipschitz free space). The quasi-metric free space satisfies a universal property (linearization of semi-Lipschitz functions). The (conic) dual of F-a (X, d) coincides with the non-linear asymmetric dual of (X, d), that is, the space SLip(0)(X, d) of semiLipschitz functions on (X, d), vanishing at a base point. In particular, for the case of a metric space (X, D), the above construction yields its usual free space. On the other hand, every metric space (X, D) naturally inherits a canonical asymmetrization coming from its free space F(X). This gives rise to a quasi-metric space (X, D+) and an asymmetric free space F-a (X, D+) . The symmetrization of the latter is isomorphic to the original free space F(X). The results of this work are illustrated with explicit examples.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Daniilidis, Aris | Hombre |
Universidad de Chile - Chile
|
| 2 | Sepulcre, Juan Matias | Hombre |
Univ Alicante - España
Universitat d'Alacant - España |
| 3 | Venegas, Francisco M. | Hombre |
Universidad de Chile - Chile
|
| 3 | Francisco Venegas, M. | - |
Universidad de Chile - Chile
|
| Fuente |
|---|
| FONDECYT |
| CONICYT (Chile) |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| European Regional Development Fund |
| ECOS-CONICYT |
| Ministerio de Ciencia, Innovacion y Universidades |
| Agencia Estatal de Investigación |
| CMM |
| ECOS-Conicyt (Chile) |
| MCIU/AEI/ERDF, UE |
| Agradecimiento |
|---|
| Part of this work was realized during a research stay of A. Daniilidis (Gaspard Monge invited professor) and F. Venegas (Research trainee) at IN-RIA (Equipe Tropicale) and CMAP of Ecole Polytechnique (France) , from September to December 2018. The authors wish to thank G. Godefroy and S. Gaubert for insightful comments. Part of this work has been presented by the third author at the conference "Function Theory on Infinite Dimen-sional Spaces XVI", held at the Complutense University of Madrid (Novem-ber 2019) . This author is grateful to the organizing committee of the event for hospitality and financial support. He also thanks S. Tapia, A. Prochazka and C. Petitjean for useful discussions.r Research of A. Daniilidis supported by the grants: CMM AFB170001, FONDECYT 1211217, ECOS-CONICYT C18E04 (Chile) , and PGC2018-097960-B-C22 (MCIU/AEI/ERDF, UE) .r Research of J. M. Sepulcre supported by the grant PGC2018-097960-B-C22 (MCIU/AEI/ERDF, UE).r Research of F. Venegas supported by the grants: CMM AFB170001, FONDECYT 1171854, ECOS-CONICYT C18E04, and CONICYT Doctor-ate Fellowship PFCHA 2019-21191167 (Chile) . |
| Part of this work was realized during a research stay of A. Daniilidis (Gaspard Monge invited professor) and F. Venegas (Research trainee) at IN-RIA (Équipe Tropicale) and CMAP of École Polytechnique (France), from September to December 2018. The authors wish to thank G. Godefroy and S. Gaubert for insightful comments. Part of this work has been presented by the third author at the conference “Function Theory on Infinite Dimensional Spaces XVI”, held at the Complutense University of Madrid (November 2019). This author is grateful to the organizing committee of the event for hospitality and financial support. He also thanks S. Tapia, A. Procházka and C. Petitjean for useful discussions. |