Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||
| DOI | 10.3389/FMICB.2022.848410 | ||
| Año | 2022 | ||
| Tipo |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Acidihalobacter is a genus of acidophilic, gram-negative bacteria known for its ability to oxidize pyrite minerals in the presence of elevated chloride ions, a capability rare in other iron-sulfur oxidizing acidophiles. Previous research involving Acidihalobacter spp. has focused on their applicability in saline biomining operations and their genetic arsenal that allows them to cope with chloride, metal and oxidative stress. However, an understanding of the molecular adaptations that enable Acidihalobacter spp. to thrive under both acid and chloride stress is needed to provide a more comprehensive understanding of how this genus can thrive in such extreme biomining conditions. Currently, four genomes of the Acidihalobacter genus have been sequenced: Acidihalobacter prosperus DSM 5130T, Acidihalobacter yilgarnensis DSM 105917T, Acidihalobacter aeolianus DSM 14174T, and Acidihalobacter ferrooxydans DSM 14175T. Phylogenetic analysis shows that the Acidihalobacter genus roots to the Chromatiales class consisting of mostly halophilic microorganisms. In this study, we aim to advance our knowledge of the genetic repertoire of the Acidihalobacter genus that has enabled it to cope with acidic stress. We provide evidence of gene gain events that are hypothesized to help the Acidihalobacter genus cope with acid stress. Potential acid tolerance mechanisms that were found in the Acidihalobacter genomes include multiple potassium transporters, chloride/proton antiporters, glutamate decarboxylase system, arginine decarboxylase system, urease system, slp genes, squalene synthesis, and hopanoid synthesis. Some of these genes are hypothesized to have entered the Acidihalobacter via vertical decent from an inferred non-acidophilic ancestor, however, horizontal gene transfer (HGT) from other acidophilic lineages is probably responsible for the introduction of many acid resistance genes.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Boase, Katelyn | Mujer |
Curtin Medical School - Australia
|
| 2 | GONZALEZ-SILVA, CAROLINA BLANCA | Mujer |
Fundación Ciencia y Vida - Chile
Fundacion Ciencia & VidaSantiago - Chile Centro Ciencia & Vida - Chile |
| 3 | Vergara, Eva | - |
Fundación Ciencia y Vida - Chile
Fundacion Ciencia & VidaSantiago - Chile Centro Ciencia & Vida - Chile |
| 4 | Neira, Gonzalo | Hombre |
Fundación Ciencia y Vida - Chile
Fundacion Ciencia & VidaSantiago - Chile Centro Ciencia & Vida - Chile |
| 5 | HOLMES, DAVID SALWAY | Hombre |
Fundación Ciencia y Vida - Chile
Universidad San Sebastián - Chile Fundacion Ciencia & VidaSantiago - Chile Centro Ciencia & Vida - Chile |
| 6 | Watkin, Elizabeth L. J. | Mujer |
Curtin Medical School - Australia
|
| Fuente |
|---|
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| ANID Fondecyt |
| Centro Ciencia & Vida |
| Financiamiento Basal para Centros Cientificos y Tecnologicos de Excelencia de ANID |
| Financiamiento Basal para Centros Cient?ficos y Tecnol?gicos de Excelencia de ANID |
| Agradecimiento |
|---|
| This work was supported by Fondecyt 1181717 (DH), ANID FONDECYT 3190792 (CG), and Centro Ciencia & Vida, FB210008, Financiamiento Basal para Centros Científicos y Tecnológicos de Excelencia de ANID. |
| This work was supported by Fondecyt 1181717 (DH), ANID FONDECYT 3190792 (CG), and Centro Ciencia & Vida, FB210008, Financiamiento Basal para Centros Científicos y Tecnológicos de Excelencia de ANID. |