Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Precursors-driven machine learning prediction of chaotic extreme pulses in Kerr resonators
Indexado
WoS WOS:000809941900016
Scopus SCOPUS_ID:85130614074
DOI 10.1016/J.CHAOS.2022.112199
Año 2022
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Machine learning algorithms have opened a breach in the prediction's fortress of high-dimensional chaotic systems. Their ability to find hidden correlations in data can be exploited to perform model-free forecasting of spatiotemporal chaos and extreme events. However, the extensive feature of these evolutions makes up a critical limitation for full-size forecasting processes. Hence, the main challenge for forecasting relevant events is to establish the set of pertinent information. Here, we identify precursors from the transfer entropy of the system and a deep Long Short-Term Memory network to forecast the complex dynamics of a system evolving in a high-dimensional spatiotemporal chaotic regime. Performances of this triggerable model-free prediction protocol based on the information flowing map are tested from experimental data originating from a passive resonator operating in such a complex nonlinear regime. We have been able to predict the occurrence of extreme events up to 9 round trips after the detection of precursor, i.e., 3 times the horizon provided by Lyapunov exponents, with 92% of true positive predictions leading to 60% of accuracy. We have implemented a process to forecast extreme events in a fully developed turbulent flow. The novelty of our strategy lies in the information's use theory method to detect precursors and use them as the input of a neural network to infer the incoming extreme events. Our process is suitable for all the extended dissipative systems that can only be partially observed or real-world data.

Revista



Revista ISSN
Chaos Solitons & Fractals 0960-0779

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Physics, Multidisciplinary
Mathematics, Interdisciplinary Applications
Physics, Mathematical
Scopus
Engineering (All)
Applied Mathematics
Mathematical Physics
Physics And Astronomy (All)
Statistical And Nonlinear Physics
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Coulibaly, Saliya - Université de Lille - Francia
Univ Lille - Francia
2 Bessin, F. Hombre Aston University - Reino Unido
Aston Univ - Reino Unido
3 CLERC-GAVILAN, MARCEL GABRIEL Hombre Universidad de Chile - Chile
4 Mussot, Arnaud Hombre Université de Lille - Francia
Univ Lille - Francia

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
FONDECYT
Fondo Nacional de Desarrollo Científico y Tecnológico
European Regional Development Fund
H2020 Marie Skłodowska-Curie Actions
Centre National de la Recherche Scientifique
French government
LABEX CEMPI
Ministry of Higher Education and Research, Hauts de France council
CNRS (IRP LAFONI project) Equipex T-REFIMEVE and H2020 Marie Sklodowska-Curie Actions (MSCA)
European Regional Development Fund (ERDF) through the Contract de Projets Etat-Region (CPER Photonics for Society)
French government through the Programme Investissement d'avenir (I-SITE)
Millennium Institute for Research in Optics, ANID- Millennium Science Initiative Program

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
SC, AM, FB acknowledge the LABEX CEMPI (ANR-11-LABX-0007) as well as the Ministry of Higher Education and Research, Hauts de France council and European Regional Development Fund (ERDF) through the Contract de Projets Etat-Region (CPER Photonics for Society P4S), the French government through the Programme Investissement d'avenir (I-SITE ULNE/ANR-16-IDEX-0004 ULNE), the CNRS (IRP LAFONI project) Equipex T-REFIMEVE and H2020 Marie Skłodowska-Curie Actions (MSCA)(713694). M.G.C. thanks for the financial support of FONDECYT project 1210353 and Millennium Institute for Research in Optics , ANID–Millennium Science Initiative Program-ICN17_012.
SC, AM, FB acknowledge the LABEX CEMPI (ANR-11-LABX-0007) as well as the Ministry of Higher Education and Research, Hauts de France council and European Regional Development Fund (ERDF) through the Contract de Projets Etat-Region (CPER Photonics for Society P4S) , the French government through the Programme Investissement d'avenir (I-SITE ULNE/ANR-16-IDEX-0004 ULNE) , the CNRS (IRP LAFONI project) Equipex T-REFIMEVE and H2020 Marie Sklodowska-Curie Actions (MSCA) (713694) . M.G.C. thanks for the financial support of FONDECYT project 1210353 and Millennium Institute for Research in Optics, ANID- Millennium Science Initiative Program-ICN17_012.

Muestra la fuente de financiamiento declarada en la publicación.