Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Abnormality Detection and Failure Prediction Using Explainable Bayesian Deep Learning: Methodology and Case Study with Industrial Data
Indexado
WoS WOS:000768994700001
Scopus SCOPUS_ID:85124729775
DOI 10.3390/MATH10040554
Año 2022
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Mistrust, amplified by numerous artificial intelligence (AI) related incidents, is an issue that has caused the energy and industrial sectors to be amongst the slowest adopter of AI methods. Central to this issue is the black-box problem of AI, which impedes investments and is fast becoming a legal hazard for users. Explainable AI (XAI) is a recent paradigm to tackle such an issue. Being the backbone of the industry, the prognostic and health management (PHM) domain has recently been introduced into XAI. However, many deficiencies, particularly the lack of explanation assessment methods and uncertainty quantification, plague this young domain. In the present paper, we elaborate a framework on explainable anomaly detection and failure prognostic employing a Bayesian deep learning model and Shapley additive explanations (SHAP) to generate local and global explanations from the PHM tasks. An uncertainty measure of the Bayesian model is utilized as a marker for anomalies and expands the prognostic explanation scope to include the model's confidence. In addition, the global explanation is used to improve prognostic performance, an aspect neglected from the handful of studies on PHM-XAI. The quality of the explanation is examined employing local accuracy and consistency properties. The elaborated framework is tested on real-world gas turbine anomalies and synthetic turbofan failure prediction data. Seven out of eight of the tested anomalies were successfully identified. Additionally, the prognostic outcome showed a 19% improvement in statistical terms and achieved the highest prognostic score amongst best published results on the topic.

Revista



Revista ISSN
Mathematics 2227-7390

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Mathematics
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Nor, Ahmad Kamal Mohd Hombre Univ Teknol Petronas - Malasia
Universiti Teknologi Petronas - Malasia
2 Pedapati, Srinivasa Rao Hombre Univ Teknol Petronas - Malasia
Universiti Teknologi Petronas - Malasia
3 Muhammad, Masdi - Univ Teknol Petronas - Malasia
Universiti Teknologi Petronas - Malasia
4 LEIVA-SANCHEZ, VICTOR ELISEO Hombre Pontificia Universidad Católica de Valparaíso - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Fondo Nacional de Desarrollo Científico y Tecnológico
ANID
National Agency for Research and Development
Ministry of Science, Technology, Knowledge, and Innovation
Universiti Teknologi Petronas Foundation-YUTP

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This research was supported partially by Universiti Teknologi Petronas Foundation-YUTP-(A.K.M.N., S.R.P., M.M.) and by project grant Fondecyt 1200525 (V. Leiva) from the National Agency for Research and Development (ANID) of the Chilean government under the Ministry of Science, Technology, Knowledge, and Innovation.

Muestra la fuente de financiamiento declarada en la publicación.