Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



High-Rate Sulfate Removal Coupled to Elemental Sulfur Production in Mining Process Waters Based on Membrane-Biofilm Technology
Indexado
WoS WOS:000774010500001
Scopus SCOPUS_ID:85127254595
DOI 10.3389/FBIOE.2022.805712
Año 2022
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



It is anticipated that copper mining output will significantly increase over the next 20 years because of the more intensive use of copper in electricity-related technologies such as for transport and clean power generation, leading to a significant increase in the impacts on water resources if stricter regulations and as a result cleaner mining and processing technologies are not implemented. A key concern of discarded copper production process water is sulfate. In this study we aim to transform sulfate into sulfur in real mining process water. For that, we operate a sequential 2-step membrane biofilm reactor (MBfR) system. We coupled a hydrogenotrophic MBfR (H-2-MBfR) for sulfate reduction to an oxidizing MBfR (O-2-MBfR) for oxidation of sulfide to elemental sulfur. A key process improvement of the H-2-MBfR was online pH control, which led to stable high-rate sulfate removal not limited by biomass accumulation and with H-2 supply that was on demand. The H-2-MBfR easily adapted to increasing sulfate loads, but the O-2-MBfR was difficult to adjust to the varying H-2-MBfR outputs, requiring better coupling control. The H-2-MBfR achieved high average volumetric sulfate reduction performances of 1.7-3.74 g S/m(3)-d at 92-97% efficiencies, comparable to current high-rate technologies, but without requiring gas recycling and recompression and by minimizing the H-2 off-gassing risk. On the other hand, the O-2-MBfR reached average volumetric sulfur production rates of 0.7-2.66 g S/m(3)-d at efficiencies of 48-78%. The O-2-MBfR needs further optimization by automatizing the gas feed, evaluating the controlled removal of excess biomass and S-0 particles accumulating in the biofilm, and achieving better coupling control between both reactors. Finally, an economic/sustainability evaluation shows that MBfR technology can benefit from the green production of H-2 and O-2 at operating costs which compare favorably with membrane filtration, without generating residual streams, and with the recovery of valuable elemental sulfur.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Biotechnology & Applied Microbiology
Multidisciplinary Sciences
Engineering, Biomedical
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Schwarz, Alex Hombre Universidad de Concepción - Chile
2 Gaete, Marcelo Hombre Universidad de Concepción - Chile
3 Nancucheo, Ivan Hombre Universidad San Sebastián - Chile
UNIV QUEENSLAND - Australia
The University of Queensland - Australia
4 Nancucheo, Ivan Hombre Universidad San Sebastián - Chile
UNIV QUEENSLAND - Australia
The University of Queensland - Australia
5 AYBAR-LAGOS, MARCELO Hombre Universidad de Concepción - Chile
6 SBARBARO-HOFER, DANIEL GERONIMO Hombre Universidad de Concepción - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Piensa Mineria MS scholarship granted by Codelco

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
Funding This research was funded by project CodelcoTec 07-18. MAG was also supported by the PiensaMineria MS scholarship granted by Codelco.
This research was funded by project CodelcoTec 07-18. MAG was also supported by the PiensaMineria MS scholarship granted by Codelco.

Muestra la fuente de financiamiento declarada en la publicación.