Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.4310/ATMP.2021.V25.N3.A1 | ||||
| Año | 2021 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
In a recent work, we have initiated the theory of N = 2 symmetric superpolynomials. As far as the classical bases are concerned, this is a rather straightforward generalization of the N = 1 case. However this construction could not be generalized to the formulation of Jack superpolynomials. The origin of this obstruction is unraveled here, opening the path for building the desired Jack extension. Those are shown to be obtained from the non-symmetric Jack polynomials by a suitable symmetrization procedure and an appropriate dressing by the anticommuting variables. This construction is substantiated by the characterization of the N = 2 Jack superpolynomials as the eigenfunctions of the N = 2 supersymmetric version of the Calogero-Sutherland model, for which, as a side result, we demonstrate the complete integrability by displaying the explicit form of four towers of mutually commuting (bosonic) conserved quantities. The N = 2 Jack superpolynomials are orthogonal with respect to the analytical scalar product (induced by the quantum-mechanical formulation) as well as a new combinatorial scalar product defined on a suitable deformation of the power-sum basis.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Alarie-Vezina, L. | Hombre |
UNIV LAVAL - Canadá
De Génie physique et d'optique Université Lavaı - Canadá |
| 2 | Lapointe, L. | - |
Universidad de Talca - Chile
|
| 3 | Mathieu, P. | Hombre |
UNIV LAVAL - Canadá
Université Laval - Canadá |
| Fuente |
|---|
| Natural Sciences and Engineering Research Council of Canada |
| Fondo Nacional de De-sarrollo Cientifico y Tecnologico de Chile (FONDECYT) |
| Fondo Nacional de De-sarrollo Científico y Tecnológico de Chile |
| Agradecimiento |
|---|
| Acknowledgments. This work was supported by the Natural Sciences and Engineering Research Council of Canada and the Fondo Nacional de De-sarrollo Cientifico y Tecnologico de Chile (FONDECYT) Regular Grant #1210688 (L.L.) . |
| Acknowledgments. This work was supported by the Natural Sciences and Engineering Research Council of Canada and the Fondo Nacional de De-sarrollo Científico y Tecnológico de Chile (FONDECYT) Regular Grant #1210688 (L.L.). |